tìm GTNN của B =lxl + l10+xl
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) \(A=x-\left|x\right|\)
Xét \(x\ge0\)thì A = x - x = 0 (1)
Xét x < 0 thì A = x - ( - x) = 2x < 0 (2)
Từ (1) và (2) ta thấy \(A\le0\)
Vậy GTLN của A bằng 0 khi và chỉ khi x \(\ge\)0
b) B = \(\left|x-3\right|-\left|5-x\right|\ge\left|x-3-5-x\right|\ge\left|8\right|=8\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-3\right)\left(5-x\right)>0\)
TH1: \(\orbr{\begin{cases}x-3>0\\5-x>0\end{cases}}\Rightarrow\orbr{\begin{cases}x>3\\x< 5\end{cases}\Rightarrow}3< x< 5\)(t/m)
TH2 : \(\orbr{\begin{cases}x-3< 0\\5-x< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< 3\\x>5\end{cases}}\)(vô lý)
Vậy GTNN của B là 8 khi và chỉ khi 3 < x < 5
c) \(C=\frac{6}{\left|x\right|-3}\)
Xét \(\left|x\right|>3\)thì C > 0
Xét \(\left|x\right|< 3\)thì do \(x\inℤ\)nên \(\left|x\right|\)= 0 hoặc 1 hoặc 2 ,khi đó C bằng -2,hoặc -3 hoặc -6
Vậy GTNN của C bằng -6 khi và chỉ khi x = \(\pm2\)
d) \(D=\frac{x+2}{\left|x\right|}\)
Xét các trường hợp :
Xét \(x\le-2\)thì \(C\le1\)
Xét \(x=-1\)thì \(C=1\)
Xét \(x\ge1\). Khi đó \(D=\frac{x+2}{x}=1+\frac{2}{x}\). Ta thấy D lớn nhất <=> \(\frac{2}{x}\)lớn nhất.Chú ý rằng x là số nguyên dương nên \(\frac{2}{x}\)lớn nhất <=> x nhỏ nhất,tức là x = 1,khi đó D = 3
So sánh các trường hợp trên ta suy ra : GTLN của C bằng 3 khi và chỉ khi x = 1
Còn bài 2 tự làmm
1 - x = 3 hoặc 1 - x = - 3 => x = - 2 hoặc x = 4
x = 3 hoặc x = - 3