K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Ta có: \(x^2-2x+3\)

\(=\left(x^2-2x+1\right)+2\)

\(=\left(x-1\right)^2+2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTNN của đa thức \(x^2-2x+3\) là 2 khi x=1

1 tháng 2 2017

a) A = 805 x 10 - 1800 : 36

    A = 8050 - 50

    A = 8000

b) Để được A có giá trị nhỏ nhất thì a = 1

Giá trị nhỏ nhất của A là :      805 x 10 - 1800 : 1 

                                         = 8050 - 1800

                                         = 6250.

1 tháng 2 2017

a) 805 x 10 -1800 : a

thay a = 36 vào biểu thức ta có: 

8050 - 1800 : 36

= 8050 - 50

= 8000

29 tháng 11 2016

Ta có \(\sqrt{x}\ge0\)với mọi x

\(\Rightarrow\sqrt{x}+3\ge3\)

\(\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\)

Suy ra giá trị lớn nhất của biểu thức là \(\frac{1}{3}\)khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)

vậy giá trị lớn nhất của biểu thức là \(\frac{1}{3}\)khi x=0

29 tháng 11 2016

giá trị lớn nhất của A là 1/3 đạt đc khi x=0

tích đúng giúp mk nhha , thanks. k hiểu thì kết bạn mk giảng cho

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

6 tháng 4 2022

\(A=\dfrac{2x^2-2x+3}{x^2-x+2}=\dfrac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}=2-\dfrac{1}{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{7}{4}}=2-\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge2-\dfrac{1}{\dfrac{7}{4}}=\dfrac{10}{7}\)-Dấu bằng xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

15 tháng 9 2023

\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2

=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1

=(x\(^2\)-x+1)\(^2\)+1

=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1

=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1

Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)

=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)

Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)

 

       
15 tháng 9 2023

thắc mắc j hỏi mik nha

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)

\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x^3-x^2\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)^2\cdot x^2+\left(x-1\right)^2=\left(x-1\right)^2\left(x^2+1\right)\)

\(\left(x-1\right)^2\ge0\)\(\forall x\)

\(x^2+1\ge1\)\(\forall x\)

Do đó: \(M>=1\)

Dấu = xảy ra khi x=0