Tìm số nguyên n sao cho A=\(3n^2+3n-101\)là lập phương của một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn! a/ Số lượng số nguyên âm trong tích của 101 số nguyên phụ thuộc vào số lượng số âm trong dãy đó. Nếu có số âm là lẻ, thì tích của chúng sẽ là số âm. Nếu có số âm là chẵn, thì tích sẽ là số dương. Vì vậy, để tích của 101 số là số âm, số lượng số âm trong dãy đó phải là số lẻ. b/ Để giải phương trình \(3n + 7 < 2n - 1\), ta thực hiện các bước sau: \[ \begin{align*} 3n + 7 &< 2n - 1 \\ 3n - 2n &< -1 - 7 \\ n &< -8 \end{align*} \] Vậy, \(n\) là một số nguyên nhỏ hơn -8.
\(n^2+3n=k^2\)
\(\Leftrightarrow4n^2+12n=4k^2\)
\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)
Phương trình ước số cơ bản
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
Đặt \(3n^3+3n-101=a^3\)
\(\Leftrightarrow3n\left(n+1\right)-101=a^3\)
Thấy \(3n\left(n+1\right)\) là số chẵn,\(101\) lẻ nên \(n^3\) là số lẻ
Đặt \(n=2k+1\)
\(\Leftrightarrow3\left(n^2+n\right)-101=8k^3+12k^2+6k+1\)
\(\Leftrightarrow3\left(n^2+n-34\right)=8k^3+12k^2+6k\)
Thấy VT chia hết cho 3;\(12k^2+6k\) chia hết cho 3 nên \(8k^3\) chia hết cho 3
Mà \(\left(8;3\right)=1\Leftrightarrow k⋮3\)
Đặt \(k=3m\) ta có:
\(\Leftrightarrow3\left(n^2+n-34\right)=8\cdot27m^3+12\cdot9m^2+6\cdot3m\)
\(\Leftrightarrow n^2+n-34=6\left(12m^3+6m^2+m\right)\)
Nếu n chia hết cho 3 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )
Nếu m chia 3 dư 1 thì VT chia 3 dư 1 trong khi đó VP chia hết cho 3 ( loại )
Nếu m chia 3 dư 2 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )
Vậy không tồn tại n nguyên thỏa mãn đề bài.