Cho a>0,b>0.Chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
BĐT \(\Leftrightarrow\left(\frac{a}{b}\right)^3+1\ge\frac{a}{b}\left(\frac{a}{b}+1\right)\) (chia hai vế cho b3 > 0)
Đặt \(\frac{a}{b}=t>0\). Ta cần chứng minh \(t^3+1\ge t\left(t+1\right)\Leftrightarrow\left(t-1\right)^2\left(t+1\right)\ge0\)
P/s: Làm kiểu khác cho nó lạ xíu:D
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) \(\Rightarrow xy+xz+yz=6\)
\(P=\sum\frac{\frac{1}{yz}}{\frac{1}{x^3}\left(\frac{1}{z}+\frac{2}{y}\right)}=\sum\frac{x^3}{y+2z}=\sum\frac{x^4}{xy+2xz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+xz+yz\right)}\ge\frac{\left(xy+xz+yz\right)^2}{3\left(xy+xz+yz\right)}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt{2}}\)
\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge0\)
\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)
\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)
\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng)
Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)