( a + m ) - ( b + m ) = a .............b
( a - m) - ( b - m ) = a ............... b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)
\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến
Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)
- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)
\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)
Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)
a/ \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m< 1\\10>5\end{matrix}\right.\) \(\Leftrightarrow m< 1\)
b/ \(A\cap B=\varnothing\Leftrightarrow m>5\)
c/ \(A\cap B\ne\varnothing\Leftrightarrow m< 5\)
d/ \(A\cup B\) là 1 khoảng \(\Leftrightarrow m< 1\)
e/ \(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow m< 1\)
f/ \(A\backslash B\ne\varnothing\Leftrightarrow m\ge1\)
( a - m ) - b = ( a - b ) - m
( a + m ) - b = ( a - b ) + m
Đây là t/c phân phối của phép cộng mak -_-
(a + m) - (b + m)
= a + m - b -m
= a - b
(a - m) - (b - m)
= a - m - b + m
= a - b
( a+m) - ( b+m ) = a+m - b - m =a - b
(a - m ) - (b -m) = a-m - b +m = a - b