K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Thứ nhất: Bạn lưu ý lần sau gõ đề bài bằng công thức toán để đề rõ ràng và đẹp hơn. Bạn muốn tính $A=\frac{a^{2019}+1}{a^{2020}}$ hay $A=a^{2019}+\frac{1}{a^{2020}}$?

Thứ hai: Đặt bài đúng box, đúng lớp.

26 tháng 10 2019

=> 4A = 4 + 42 + 43 + ... + 42020 

 4A - A = 4 + 42 + ... + 42020 ) - ( 1 + 4 + ... + 42019 ) 

3A = 42020 - 1 

A = \(\frac{4^{2020}-1}{3}\)

Ta có A - B = 0 

Vậy A - B = 0 

26 tháng 10 2019

Ta có : A = 40 + 41 + 42 + .... + 42019

                = 1+ 4 + 42 + .... + 42019

=> 4A = 4 + 42 + 43 + ... + 42020

Lấy 4A trừ A theo vế ta có : 

\(4A-A=\left(4+4^2+4^3+...+4^{2020}\right)-\left(1+4+4^2+...+4^{2019}\right)\)

\(3A=4^{2020}-1\)

\(A=\frac{4^{2020}-1}{3}\)

\(\Rightarrow A-B=\frac{4^{2020}-1}{3}-\frac{4^{2020}}{3}=\frac{4^{2020}-1-4^{2020}}{3}=-\frac{1}{3}\)

11 tháng 11 2021

\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)

11 tháng 11 2021

ghê wa b ưi, nhma mình hông hỉu j hết

hiha

7 tháng 2 2020

Ta có: 

\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)

=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)

Lấy

 \(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)

<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)

<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)

<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)

Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)

=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)

và \(0< \frac{2020}{4039}< 1\)

=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)

=> 0 < a < 1

=> a không phải là một số nguyên.

31 tháng 3 2020

toan lop may vay ban ?

10 tháng 9 2020

Nhanh giúp mk nhé!

Cần gấp lắm!

số lượng số hạng của dãy số là 

    (  2021 - 2  ) : 1 + 1 = 2020 

tổng của dãy số là 

  ( 2021 + 2) x 2020 : 2 = 2043230

                                     vậy A = \(\frac{1}{2043230}\)

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn