tìm nghiệm nguyên của phương trình 3x^2+4y^2+6x+3y-4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y là số nguyên tố đúng ko? bn có nhiueeuf câu hỏi nên mik trả lời nhầm.(ko phait thì thui nhé)
\(\left(3x^2+6x+3\right)+\left(3y^2+3y+1\right)+y^2-8=0\)
\(\Leftrightarrow3\left(x+1\right)^2+3\left(y+\frac{1}{2}\right)^2-\frac{9}{4}-8=0\)
\(\Leftrightarrow12\left(x+1\right)^2+3\left(y+1\right)^2=41\)
\(\Rightarrow12\left(x+1\right)^2\le41\Rightarrow\left(x+1\right)^2\le3\Rightarrow x+1\in\left\{1;0;-1\right\}\Rightarrow x\in\left\{0;-1;-2\right\}\)
Bạn làm nốt
\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)
Coi pt trên là pt bậc 2 ẩn x
Ta có : \(\Delta'=36-12y^2-9y-15\)
\(=-12y^2-9y+21\)
Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)
\(\Leftrightarrow-\frac{7}{4}\le y\le1\)
Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)
Rồi làm nốt
\(\Leftrightarrow3\left(x+1\right)^2+4y^2+3y-7=0\)
\(\Leftrightarrow4y^2+3y-7=-3\left(x+1\right)^2\le0\)
\(\Rightarrow4y^2+3y-7\le0\Rightarrow-\frac{7}{4}\le y\le1\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
Thay lần lượt y vào pt ban đầu thấy chỉ có \(y=1\) thỏa mãn, khi đó \(x=-1\)
\(3\left(x+1\right)^2=-4y^2-3y+7\)
\(\Rightarrow-4y^2-3y+7\ge0\Rightarrow-\frac{7}{4}\le y\le1\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
- Với \(y=-1\Rightarrow3\left(x+1\right)^2=6\Rightarrow\) ko có x nguyên t/m
- Với \(y=0\Rightarrow3\left(x+1\right)^2=7\) ko có x nguyên t/m
- Với \(y=1\Rightarrow3\left(x+1\right)^2=0\Rightarrow x=-1\)
a)
b)
Nhận thấy: x phải là số lẻ. Vì nếu x là số chẵn thì 3x^2 sẽ là số chẵn => 3x^2-4y^2 là số chẵn trong khi 13 là số lẻ
x là số lẻ => x có dạng x= 2k+1 với k thuộc Z
thay x=2k+1 vào phương trình ta có:
3(4k^2+4k+1) - 4y^2 = 13
<=> 6k^2+6k-2y^2=5
<=> 6k(k+1) = 5+2y^2
Dễ thấy vế trái là số chẵn trong khi vế phải là số lẻ => phương trình không có nghiệm nguyên => dpcm