cho tam giác ABC đều cạnh 2a , trọng tâm G . tính độ dài vecto AB - GC .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{BA}-\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{CB}=\overrightarrow{CA}\)
b: lấy điểm H sao cho \(\overrightarrow{AH}=\overrightarrow{GC}\)
\(\overrightarrow{AH}=\overrightarrow{GC}\)
=>AH//GC và AH=GC
Xét tứ giác AHCG có
AH//CG
AH=GC
Do đó: AHCG là hình bình hành
ΔABC đều có G là trọng tâm
nên \(AG=GB=GC=\dfrac{a\sqrt{3}}{3}\)
\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AH}\right|\)
\(=\left|\overrightarrow{HA}+\overrightarrow{AB}\right|=\left|\overrightarrow{HB}\right|=HB\)
AHCG là hình bình hành
=>HC=AG và HC//AG
=>\(HC=\dfrac{a\sqrt{3}}{3}\)
ΔABC đều có G là trọng tâm
nên GB=GC=GA
GB=GC
AB=AC
Do đó: AG là đường trung trực của BC
=>AG\(\perp\)BC
mà CH//AG
nên CH\(\perp\)CB
=>ΔCHB vuông tại C
=>\(BH^2=HC^2+BC^2\)
=>\(BH^2=\left(\dfrac{a\sqrt{3}}{3}\right)^2+a^2=a^2+\dfrac{1}{3}a^2=\dfrac{4}{3}a^2\)
=>\(BH=a\cdot\dfrac{2\sqrt{3}}{3}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=BH=\dfrac{2a\sqrt{3}}{3}\)
Do trọng tâm tam giác đều đồng thời là trực tâm nên \(GC\perp AB\)
Gọi M là trung điểm AB \(\Rightarrow CM=\frac{2a.\sqrt{3}}{2}=a\sqrt{3}\) (công thức độ dài trung tuyến tam giác đều)
\(\Rightarrow CG=\frac{2}{3}CM=\frac{2a\sqrt{3}}{3}\)
Đặt \(x=\left|\overrightarrow{AB}-\overrightarrow{GC}\right|\Rightarrow a^2=AB^2+GC^2-2\overrightarrow{AB}.\overrightarrow{GC}=AB^2+GC^2\)
\(\Rightarrow x^2=\left(2a\right)^2+\left(\frac{2a\sqrt{3}}{3}\right)^2=\frac{16a^2}{3}\Rightarrow x=\frac{4a\sqrt{3}}{3}\)
Kẻ \(\overrightarrow{AH}=\overrightarrow{GC}\)
ΔABC đều có G là trọng tâm
nên G là tâm đường tròn nội tiếp ΔABC
=>AG,CG,BG lần lượt là phân giác của góc \(\widehat{BAC};\widehat{ACB};\widehat{ABC}\)
ΔABC đều
=>\(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}=60^0\)
AG là phân giác của góc BAC
=>\(\widehat{BAG}=\widehat{CAG}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot60^0=30^0\)
CG là phân giác của góc ACB
=>\(\widehat{ACG}=\widehat{BCG}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)
Xét ΔGAC có \(\widehat{AGC}+\widehat{GAC}+\widehat{GCA}=180^0\)
=>\(\widehat{AGC}+30^0+30^0=180^0\)
=>\(\widehat{AGC}=120^0\)
\(\overrightarrow{AH}=\overrightarrow{GC}\)
=>AH//GC và AH=GC
Xét tứ giác AHCG có
AH//CG
AH=CG
Do đó: AHCG là hình bình hành
=>\(\widehat{GAH}+\widehat{AGC}=180^0\)
=>\(\widehat{GAH}=180^0-120^0=60^0\)
ΔABC đều có G là trọng tâm
nên \(AG=CG=BG=\dfrac{a\sqrt{3}}{3}=\dfrac{2\sqrt{3}\cdot\sqrt{3}}{3}=2\)
\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{HA}=\overrightarrow{HB}\)
\(\widehat{BAH}=\widehat{BAG}+\widehat{GAH}=30^0+60^0=90^0\)
=>ΔABH vuông tại A
AH=CG
mà 2
nên AH=2
ΔABH vuông tại A
=>\(BH^2=AB^2+AH^2\)
=>\(BH^2=\left(2\sqrt{3}\right)^2+2^2=16\)
=>BH=4
=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{HB}\right|=HB=4\)
Gọi M là trung điểm AB \(\Rightarrow CM=\frac{2a\sqrt{3}}{2}=a\sqrt{3}\) (t/c trung tuyến tam giác đều)
\(\Rightarrow GC=\frac{2}{3}CM=\frac{2a\sqrt{3}}{3}\)
Do trong tam giác đều, trọng tâm đồng thời là trực tâm
\(\Rightarrow AB\perp GC\Rightarrow\overrightarrow{AB}.\overrightarrow{GC}=0\)
Đặt \(x=\left|\overrightarrow{AB}+\overrightarrow{GC}\right|\Rightarrow x^2=AB^2+GC^2+2\overrightarrow{AB}.\overrightarrow{GC}\)
\(\Rightarrow x^2=AB^2+GC^2=4a^2+\frac{4a^2}{3}=\frac{16a^2}{3}\)
\(\Rightarrow x=\frac{4a\sqrt{3}}{3}\)
Xét tam giác đều ABC có
G là trọng tâm của tam giác(gt)
=> 3 đường trung tuyến bằng nhau
=> \(GB=GC=AG=\dfrac{2}{3}AM=\dfrac{2}{3}.3=2\left(cm\right)\)
cho tam giác abc nhọn có góc ACB=50 độ, h là trực tâm tam giác ABC. khẳng định nào dưới đây sai:
A. góc AHB=130 độ B.góc HBC=40 độ C. góc HAC=BHC D. góc A> góc B>góc C ( bạn nhớ giải thích dùm mk nha)\(\overrightarrow{u}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GB}+\overrightarrow{BN}\)
\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{CM}+\overrightarrow{BN}=\overrightarrow{GB}+2\overrightarrow{BN}\)
G là trọng tâm \(\Rightarrow BG=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{GB}+2\overrightarrow{BN}\right|\Rightarrow\left|\overrightarrow{u}\right|^2=BG^2+4BN^2+4\overrightarrow{GB}.\overrightarrow{BN}\)
\(=\dfrac{a^2}{3}+4a^2+4.\dfrac{a\sqrt{3}}{3}.a.cos120^0=\dfrac{13-2\sqrt{3}}{3}a^2\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\dfrac{13-2\sqrt{3}}{3}}.a\)
Vì G là trọng tâm tam giác ABC=> \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{CG}=\overrightarrow{GA}+\overrightarrow{GB}\)
\(\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{GA}+\overrightarrow{GB}\right|=2\left|\overrightarrow{GB}\right|=2GB\)
Gọi K là trung điểm AC
\(\Rightarrow GB=\frac{2}{3}BK=\frac{2}{3}\sqrt{AB^2-\frac{1}{4}AC^2}=\frac{2}{3}\sqrt{\frac{3}{4}AB^2}=\frac{2}{3}\sqrt{\frac{3}{4}.4a^2}=\frac{2\sqrt{3}}{3}a\)