Hỏi : bài toán về dãy tỉ số bằng nhau
Cho x và y làn lượt tỉ lệ với 2 và 3
Và xy=30
tìm x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
a) Em ghi đề lại cho đúng
b) Hệ số tỉ lệ của y đối với x:
k = y/x = 30/(-5) = -6
c) Do x và y tỉ lệ nghịch nên hệ số tỉ lệ:
a = x.y = 6.(-9) = -54
a: k=xy=8
b: y=8/x
c: Khi x=3 thì y=8/3
Khi x=5 thì y=8/5
x=3y
=>y=x/3
y=2z
=>x/3=2z
=>x=6z
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k=6
Theo de bai ta co :
Dat : \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x.y=2k.3k\)
\(30=6k^2\)
\(30:6=k^2\)
\(5=k^2\)
de co van de ko