K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

vì 6x chia hết cho 2 với mọi x, 4y chia hết cho 2 với mọi y

=> 6x+4y chia hết cho 2 => 15 chia hết cho 2 => vô lý

vậy không tồn tại x,y

4 tháng 3 2016

b, x = 10 , y = 8

31 tháng 8 2023

a) \(x\left(y-7\right)+y-12=0\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y-7\right)+y-7-5=0\)

\(\Rightarrow\left(x+1\right)\left(y-7\right)=5\)

\(\Rightarrow\left(x+1\right);\left(y-7\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;2\right);\left(0;12\right);\left(-6;6\right);\left(4;8\right)\right\}\)

31 tháng 8 2023

b) xy - 6x - 4y + 13 = 0

x(y - 6) - 4y + 24 - 11 = 0

x(y - 6) - 4(y - 6) = 11

(y - 6)(x - 4) = 11

TH1: x - 4 = 1 và y - 6 = 11

*) x - 4 = 1

x = 5

*) y - 6 = 11

y = 17

TH2: x - 4 = -1 và y - 6 = -11

*) x - 4 = -1

x = 3

*) y - 6 = -11

y = -5

TH3: x - 4 = 11 và y - 6 = 1

*) x - 4 = 11

x = 15

*) y - 6 = 1

y = 7

TH4: x - 4 = -11 và y - 6 = -1

*) x - 4 = -11

x = -7

*) y - 6 = -1

y = 5

Vậy ta có các cặp giá trị (x; y) sau:

(-7; 5); (15; 7); (3; -5); (5; 17)

Dễ mà :vv

Ta có: \(x^2+4y^2-6x+4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

Đến đây tự giải...

4 tháng 5 2021

<=> x^2-6x+9+4y^2+4y+1=0

<=> x^2-2.3.x+3^2+(2y)^2+2.2y.1+1=0

<=>(x-3)^2+(2y+1)^2=0

<=> x-3=0 và 2y+1=0

<=> x=3 và y=-1/2

 

28 tháng 10 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{5}=\frac{2y}{4}=\frac{6x+4y}{5\cdot2+4\cdot2}=\frac{15}{18}=\frac{5}{6}\)

\(\Rightarrow18x=25\Rightarrow x=\frac{25}{18}\)

\(\Rightarrow12y=20\Rightarrow y=\frac{20}{12}=\frac{5}{3}\)

Vậy \(x=\frac{25}{18};y=\frac{5}{3}\)

29 tháng 10 2016

ta có: 3x/5=2y/4 =6x/10 =4y/8

Aps dụng tính chất dãy tỉ số bằng nhau :

6x/10=4y/8=6x+4y/10+8=15/18=5/6

Nên 3x/5=5/6 suy ra 3x=25/6 suy ra x=25/18

2y/4=5/6 suy ra 2y= 10/3 suy ra y=10/6

Vậy x=25/18; y=10/6

20 tháng 8 2017

mình 0 bít làm

25 tháng 6 2015

sửa nè

x^2 +4y^2 - 6x +4y + 10 = 0

<=>x2-6x+9+4y2+4y+1=0

<=>(x-3)2+(2y+1)2=0

<=>x-3=0 và 2y+1=0

<=>x=3 và 2y=-1

<=>x=3 và y=-1/2

25 tháng 6 2015

nhầm j

x^2 +4y^2 - 6x +4y + 10 = 0

<=>x2-6x+9+4y2+4y+1=0

<=>(x-3)2+(2y+1)2=0

<=>x-3=0 và 2y-1=0

<=>x=3 và 2y=1

<=>x=3 và y=1/2

3 tháng 12 2018

\(x^2+4y^2-6x+4y+10=0\)

\(x^2-6x+9+\left(4y^2+4y+1\right)=0\)

\(\left(x-3\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   vì \(0+0=0\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=\frac{-1}{2}\end{cases}}\)  

4 tháng 7 2021

`A=x^2+6x+y^2+4y+15`

`=(x^2+6x+9)+(y^2+4y+4)+2`

`=(x+3)^2+(y+2)^2+2`

Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`

`=>A_(min)=2 <=> x=-3; y=-2`.

Ta có: \(A=x^2+6x+y^2+4y+15\)

\(=x^2+6x+9+y^2+4y+4+2\)

\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi (x,y)=(-3;-2)