Cho T= 20190+ 20191+20192+...+20192011
Tính 2018T+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 2019.2021.a = (2020 – 1)(2020 + 1)a = ( 2020 2 – 1)a
Và B = ( 2019 2 + 2 . 2019 + 1 ) a = ( 2019 + 1 ) 2 a = 2020 2 a
Vì 2020 2 – 1 < 2020 2 và a > 0 nên ( 2020 2 – 1 ) a < 2020 2 a hay A < B
Đáp án cần chọn là: D
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
X x 1 + X x 3 + X x 2 + X x 4 = 20190
X x ( 1 + 3 + 2 + 4 ) = 20190
X x 10 = 20190
X = 20190 : 10
X = 2019
~Hok tốt~
1.
$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$
2.
$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$
3. Không phù hợp để tính nhanh
4.
$=15^8-(15^8-1)=1$
5.
$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$
$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$
$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$
$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$
6:
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)
\(A=2019^2-\left(2019-3\right)\left(2019+3\right)\\ A=2019-2019^2-2019\cdot3+2019\cdot3+3^2\\ A=9\)
\(T=2019^0+2019^1+2019^2+...+2019^{2011}\)
\(\rightarrow2019T=2019\left(2019^0+2019^1+2019^2+...+2019^{2011}\right)\)
\(\rightarrow2019T=2019^1+2019^2+2019^3+...+2019^{2012}\)
\(\rightarrow2019T-T=(2019^1+2019^2+2019^3+...+2019^{2012})-\left(2019^0+2019^1+...+2019^{2011}\right)\)
\(\rightarrow2018T=2019^{2012}-2019^0=2019^{2012}-1\)
\(\rightarrow2018T+1=2019^{2012}-1+1=2019^{2012}\)
T = 20190 + 20191 + 20192 +...+20192011
T = 1 + 20191 + 20192 +...+ 20192011
2019T = 20191 + 20192 +20193 +...+20192012
2019T - T = (20191 + 20192 +20193 +...+20192012) - (1 + 20191 + 20192 +...+ 20192011)
2018T = 20192012 - 1
=> 2018T + 1 = 20192012