K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

 => 7A=7.(7+72+73+...+72016)

7A=72+73+74+...+72017

=> 7A-A=(72+73+74+...+72017)-(7+72+73+...+72016)

=> 6A=72017-7

=> A=\(\frac{7^{2017}-7}{6}\).

24 tháng 10 2016

cho mìh hỏi 7^2016 và 7^2017 ở đâu ra vậy bạn

20 tháng 9 2023

\(A=7+7+7^2+...+7^{100}\)

\(7A=7^2+7^2+7^3+...+7^{101}\)

\(A=14+7^2+7^{101}\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Em xem thử lại đề bài nhé

16 tháng 1 2018

A   = 5 a − 2 a − 7 3 a + 7 + 3 2 a − 7 − 2 a 2 2 a − 7 − 7

31 tháng 7 2023

\(S=7+7^2+7^3+...7^{20}\)

Ta có: \(7S=7.\left(7+7^2+7^3+...+7^{20}\right)\)

\(7S=7^2+7^3+7^4+...+7^{21}\)

\(7S-S=\left(7^2+7^3+7^4+...+7^{21}\right)-\left(7+7^2+7^3+...+7^{20}\right)\)

\(6S=\left(7^{21}-7\right)\)

\(S=\left(7^{21}-7\right):6\)

Chúc bạn học tốt

7S=7^2+7^3+...+7^21

=>6S=7^21-7

=>S=(7^21-7)/6

9 tháng 10 2018

23 tháng 8 2015

A = 1 + 1/110 + 1 + 1/90 + ... + 1  + 1 /2 

A = 10 + 1/1.2+ 1 /2.3 + ... + 1/9.10 + 1/10.11

A = 10 + 1/1 - 1/2 + 1 /2 - 1/3 + ... + 1/9 - 1/10 + 1/10 - 1/11

A = 10 + 1/1 - 1/11

A = 10 + 10/11

A = 120/11

23 tháng 8 2015

A = \(\frac{111}{110}+\frac{91}{90}+\frac{73}{72}+...+\frac{13}{12}+\frac{7}{6}+\frac{3}{2}\)

A = \(\left(\frac{1}{2}+1\right)+\left(\frac{1}{6}+1\right)+\left(\frac{1}{12}+1\right)+....+\left(\frac{1}{110}+1\right)\)

A = (1 + 1 + 1 +...+ 1) + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

A = 10 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

A = \(10+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

A = \(10+\left(1-\frac{1}{11}\right)\)

A = \(10+\frac{10}{11}\)

A = \(\frac{120}{11}\)

13 tháng 1 2022

A < B

13 tháng 1 2022

...

28 tháng 12 2022

Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)

\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)

...

\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)

Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)

28 tháng 12 2022

bài kt cuối kì phải tự làm  bạn ơi