Cmr (9101+1) chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(3^n+1\) chia hết cho \(10\)
\(\Rightarrow3^4\left(3^n+1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^4\cdot3^n+3^4\cdot1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+81\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1+80\right)\) chia hết cho \(10\)
Vì \(80\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1\right)\) chia hết cho \(10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
CM. Ta có thể viết 100...01 = 103n+ 1, trong đó n là số nguyên dương. Sử dụng hằng đẳng thức a3+ b3= (a+b)(a2- a b + b2) với a = 10nvà b = 1, ta thu được (10n)3+ 1 = (10n+ 1)(102n- 10n+ 1). Do (10n+ 1) > 1 và (102n- 10n+ 1) > 1 khi n là nguyên dương nên ta có đpcm.
bạn tham khảo nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) 992 - 199 chia hết cho 2
Vì 199 = 99 . 2 + 1 mà 992 = 99 . 99 nên 992 > 199
Ta có :
992 = 99 . 99 = ......1
199 = ....9
Vì : .......1 - .....9 = ......2
Mà : ........2\(⋮2\)
Nên 992 - 199 \(⋮2\)( ĐPCM )
b ) 201110 - 1 chia hết cho 10
Vì 2011 > 1 nên 201110 > 1
Ta có :
201110 = 2011 . 2011 = .......1
Vì : .......1 - 1 = ..........0
Mà .........0\(⋮10\)
Nên 201110 - 1 \(⋮10\)( ĐPCM )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 102k-1=(102)k-12=(10k-1)(10k+1)
Mà 10k-1 chia hết cho 19
=>102k-1 chia hết cho 19
Mình đang cần gấp
Dễ mà bạn !!!
Áp dụng bổ đề a^n+b^n chia hết cho a+b với mọi n lẻ
=> 9^101+1^101 chia hết cho (9+1) do 101 là số lẻ
=> 9^101+1 chia hết cho 10
=> đpcm.