cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
anh CTV làm giúp e đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
anh CTV giải giúp e nốt lần này đi
Cho các số thực x,y,z thỏa mãn: (x-y)(x+y)=z^2 và 4y^2=5+7z^2. Tính giá trị của biểu thức S= 2x^2 + 10y^2 - 23z^2
\(\left(x-y\right)\left(x+y\right)=z^2\)
\(\Leftrightarrow x^2=y^2+z^2\)
\(\Rightarrow\text{S= 12y^2 - 21z^2}\)
\(\Rightarrow\text{S= 3(4y^2 - 7z^2)}\)
Mà: 4y^2=5+7z^2
suy ra S=3*5=15
ý là giờ phải giải cái đầu rồi thay vào cái phía D á bn
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)