cho x-y=7:xy=15 tính x^3-y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
a: \(\Leftrightarrow\left(x,y-3\right)\in\left\{\left(1;15\right);\left(3;5\right);\left(5;3\right);\left(15;1\right);\left(-1;-15\right);\left(-3;-5\right);\left(-5;-3\right);\left(-15;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;18\right);\left(3;8\right);\left(5;6\right);\left(15;4\right);\left(-1;-12\right);\left(-3;-2\right);\left(-5;0\right);\left(-15;2\right)\right\}\)
x+y=7
=>(x+y)3-3xy(x+y)=73-3.10.7
<=>x3+3x2y+3xy2+y3-3x2y-3xy2=133
<=>x3+y3=133
=>(x-y)3+3xy(x-y)
=x3-3x2y+3xy2-y3+3x2y-3xy2
=x3-y3
*)Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=33+3.10.3=117
*))Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=(-3)3+3.10.(-3)=-117
x + y = 7 => x = 7 - y thay vào x.y ta có:
( 7 -y) y = 10 =>7y - y^2 = 10 => y^2 - 7y + 10 = 0 => y^2 -2y - 5y +10 => y( y-2) - 5 (y - 2) = 0
=> ( y - 5)(y - 2) = 0 => y = 5 hoặc 2 => x = 2 hoặc 5 ( Nếu bạn thêm đk x > y hay y>x chior có một trường hợp thôi)
(+) y = 5 và x = 2
=> x - y = 2- 5 = -5
x^2 + y^2 = 2^2 + 5^2 = 4 + 25 = 29
x^3 + y^3 = 2^3 + 5^3 = 8 + 125 = 133
x^3 - y^3 = 2^3 - 5^3 = 8 -125 = -117
(+) Tương tự x = 5 và y = 2
(x-y)(x^2+y^2)(x^3-y^3)
=7[(x-y)^2+2xy][(x-y)^3+3xy(x-y)]
=7(7^2+20)(7^3+30.7)
=7.(49+20)(343+210)
=7.69.553
=267099
cho mk nha ツ
Ta có: \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right).\)
Thật vậy: \(VP=\left(x-y\right)^3+3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3+3x^2y-3xy^2=x^3-y^3=VT\)
Áp dụng định lý trên và thay \(x-y=7;\) \(xy=15\)vào \(x^3-y^3\)ta có: \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right).\)
\(=7^3+3.15.7=343+315=658\)