K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

\(x^2-2^y=33\)

<=> \(x^2=33+2^y\)

Vì x nguyên => \(2^y\)là số tự nhiên => y là số tự nhiên 

TH1: y = 2k + 1 ; k thuộc N

=> \(x^2=33+2^{2k+1}\)

=> \(x^2=33+2.4^k\)

Có: \(4\equiv1\left(mod3\right)\)=> \(4^k\equiv1\left(mod3\right)\)=> \(2.4^k\equiv2\left(mod3\right)\)

=> \(VP:3\)dư 2

mà VT là số chính phương chia 3 không dư 2

Do đó trường hợp này loại.

TH2: y = 2k ; k thuộc N

=> Ta có pt:

\(x^2-2^{2k}=33\)

<=> \(\left(x-2^k\right)\left(x+2^k\right)=33.1=-33.\left(-1\right)=11.3=-11.\left(-3\right)\)

Vì : \(2^k>0\)=> \(x-2^k< x+2^k\)

Xảy ra 4 khả năng:

\(\hept{\begin{cases}x+2^k=33\\x-2^k=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=17\\y=8\end{cases}}}\) thử lại tm

\(\hept{\begin{cases}x+2^k=-1\\x-2^k=-33\end{cases}\Leftrightarrow\hept{\begin{cases}x=-17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=8\end{cases}}}\) thử lại tm

\(\hept{\begin{cases}x+2^k=11\\x-2^k=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=4\end{cases}}}\)thử lại tm

\(\hept{\begin{cases}x+2^k=-3\\x-2^k=-11\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=4\end{cases}}}\)thử lại tm

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
19 tháng 2 2016

\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)

=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)

\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)

=>(x-2)y-2x=0

=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )

=>x=2

=>y-2=0

=>y=2

vậy x=y=2

24 tháng 2 2021

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

28 tháng 11 2017

mn xem đề này có sai k nha :)

26 tháng 6 2023

x+2 nhe

 

26 tháng 6 2023

ta có đc : 

x2-4-y=y2-4

<=> x2=y2+y

<=> x2=y(y+1)

vì VP là tích của 2 số nguyên liên tiếp và VT là bình phương một số và x và y nguyên => x2=y(y+1)=0 

<=> y=0 hoặc y=-1

vậy ta có cặp no(x;y):(0;0) ; (0;-1)

1 tháng 9 2018

khó thế :(

24 tháng 9 2018

phắc cừn sít