K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Ta có: \(x^7;y^7\)khi chia cho 7 sẽ có số dư là: 0,1,2,3,4,5,6

Mà ta lại có VP chia hết cho 7 nên VT cũng phải chia hết cho 7 nên x, y phải có dạng sau đây:

\(\left(x,y\right)=\left(7m+a,7n+b\right)\)

Với \(a+b\equiv0\left(mod7\right)\)

20 tháng 11 2019

khong biet hehe

26 tháng 10 2017

\(x^2+2x=y^2+2y+7\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)

Đến đây bạn lập bảng ước của 7 rồi tự làm nha

26 tháng 10 2017

x^2-y^2-2x+2y

=(x^2-y^2)-(2X-2Y)

=(x+y)(x-y)-2(x-y)

=(x-y)(x+y-2)

28 tháng 10 2016

chiu roi

ban oi

tk nhe

29 tháng 5 2020

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

3 tháng 9 2020

Ta có phương trình :

\(x^2y+x^2=x^3-y+2x+7\)

\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)

\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)

\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)

Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)

\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)

\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)

\(\Leftrightarrow x+8⋮x^2+1\)

\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)

\(\Leftrightarrow x^2+1-65⋮x^2+1\)

\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)

\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)

\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\)\(x^2\) là số chính phương với \(x\inℤ\)

\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)

+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )

+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )

+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )

+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )

+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)