K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A=13+23+...+1003; B=1+2+...+100

Ta có :             

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003=A⋮50

⇒A⋮50.101

⇒A⋮B

4 tháng 11 2019

Chỉ cần để ý: \(1^3+2^3+3^3+...+100^3=\left(1+2+3+...+100\right)^2\)

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

22 tháng 12 2021

bạn ghi lại đề đi bạn

22 tháng 12 2021

\(B=3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+...+3^{99}\right)⋮2\)

22 tháng 12 2021

B=3(1+3)+...+399(1+3)=4(3+...+399)2

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$

$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$

$=40(3+3^5+...+3^{97})$

$=40.3(1+3^4+....+3^{96})$

$=120(1+3^4+...+3^{96})\vdots 120$

18 tháng 10 2015

Ta có :

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

⇒A⋮50.101⇒A⋮B

18 tháng 10 2015

Ta có :

B=101.50

A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

A⋮50.101⇒AB

30 tháng 4 2017

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

30 tháng 4 2017

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)