tìm giá trị lớn nhất của biểu thức: \(F=-|10,2-3x|-14\)
giúp mik voi sap thi zoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\left|2x-1,5\right|\ge0\) với mọi x
\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\)với mọi x
\(\Rightarrow MaxD=5,5\)
\(A=-x^2+x=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu ''='' xảy ra khi x = 1/2
\(A=-x^2+x=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=1/2
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
c) Ta có: \(\left|5x-2\right|\ge0\forall x\)
\(\left|3y+12\right|\ge0\forall y\)
Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
bạn làm bài nào đây ạ? 4 - |5x-2| - |3y + 12| mà đâu phải −|5x−2|−|3y+12|+4
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
Ta có : |10,2 - 3x| \(\ge0\forall x\)
Nên : E = |10,2 - 3x| - 14 \(\ge-14\forall x\)
Vậy Emin = -14 , dấu "=" xảy ra khi và chỉ khi x = 3,4
Ta có : \(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Dấu "=" xảy ra <=> |10,2 - 3x| = 0
=> 10,2 - 3x = 0
=> 3x = 10,2
=> x = 3,4
Vậy GTLN của F là - 14 khi x = 3,4
Ta có :
\(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Mà \(F=-\left|10,2-3x\right|-14\)
\(\Rightarrow F\le-14\)
\(\Leftrightarrow10,2-3x=0\Leftrightarrow3x=10,2\Leftrightarrow x=3,4\)
Vậy ..............\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)