1.tìm min
a)A = \(x^2\) + 3 / y-2/ -1
b) B = (\(\left(2x^2+1\right)^4-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
Lời giải:
a) Xét tử thức:
\((x^2+y)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)=x^2y+\frac{x^2}{4}+y^2+\frac{y}{4}+x^2y^2+\frac{3}{4}y+\frac{1}{4}\)
\(=x^2y+\frac{x^2}{4}+y+y^2+x^2y^2+\frac{1}{4}\)
\(=(x^2y+\frac{x^2}{4}+x^2y^2)+(y^2+y+\frac{1}{4})=x^2(y^2+y+\frac{1}{4})+(y^2+y+\frac{1}{4})\)
\(=(x^2+1)(y+\frac{1}{2})^2\)
Xét mẫu thức:
\(x^2y^2+1+(x^2-y)(1-y)=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=(x^2y^2-x^2y+x^2)+(y^2-y+1)=x^2(y^2-y+1)+(y^2-y+1)\)
\(=(y^2-y+1)(x^2+1)\)
Do đó:
\(A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\) là giá trị không phụ thuộc vào $x$
b)
\((y+\frac{1}{2})^2\geq 0, \forall y\in\mathbb{R}\)
\(y^2-y+1=(y-\frac{1}{2})^2+\frac{3}{4}>0, \forall y\in\mathbb{R}\)
Do đó: $A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\geq 0$
Hay $A_{\min}=0$ tại $y=\frac{-1}{2}$
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
a: \(y=\left(x^2-1\right)^2\)
=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)
\(=4x\left(x^2-1\right)\)
Đặt y'>0
=>\(x\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>\(x>1\)
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)
Đặt y'<0
=>\(x\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)
=>0<x<1
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>x<-1
Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)
Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)
b: \(y=\left(3x+4\right)^3\)
=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)
\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)
=>Hàm số luôn đồng biến trên R
c: \(y=\left(x+3\right)^2\left(x-1\right)\)
=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)
=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)
=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)
=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)
=>\(y'=3x^2-2x+3\)
\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)
=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)
=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)
=>Hàm số luôn đồng biến trên R
d: \(y=\left(2x+2\right)\left(x^3-1\right)\)
=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)
\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)
\(=2x^3-2+6x^3+6x^2\)
\(=8x^3+6x^2-2\)
Đặt y'>0
=>\(8x^3+6x^2-2>0\)
=>\(x>0,46\)
Đặt y'<0
=>\(8x^3+6x^2-2< 0\)
=>\(x< 0,46\)
Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)
Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)
a: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7>=-7\)
Dấu = xảy ra khi x=2
b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)
\(=x^2-6x+9+x^2-2x+1\)
\(=2x^2-8x+10\)
\(=2x^2-8x+8+2\)
\(=2\left(x-2\right)^2+2>=2\)
Dấu = xảy ra khi x=2
a) Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)
b) Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0
a) Ta có: A = x2 + 3|y - 2| - 1 \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy MinA = -1 <=> x = 0 và y = 2
b) Ta có: 2x2 \(\ge\)0 => 2x2 + 1 \(\ge\)1 => (2x2 + 1)4 \(\ge\)1 => (2x2 + 1)4 - 3 \(\ge\)-2 \(\forall\)x
Dấu "=" xảy ra <=> 2x2 + 1 = 1 <=> 2x2 = 0 <=> x = 0
Vậy MinB= -2 <=> x = 0
Z = x2 + 3| y - 2 | - 1
Z = x2 + 3| y - 2 | - 1 \(\ge\)- 1
Dấu = xảy ra \(\Leftrightarrow\)x = 0 và y - 2 = 0
\(\Rightarrow\)x = 0 và y = 2
Min Z = - 1 \(\Leftrightarrow\)x = 0 và y = 2