1+7+7^2+7^3+.....+7^49+7^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=................................
\(7A=7+7^2+7^3+.........+7^{51}.\)
\(7A-A=7^{51}-1\)
\(A=\frac{7^{51}-1}{6}\)
chúc bn vui vẻ thành công trong năm mới 2018
Đặt \(A=1+7+7^2+...7^{50}\)
\(7\cdot A=7+7^2+7^3+.....+7^{51}\)
\(7\cdot A-A=\left(7+7^2+7^3+.....+7^{51}\right)-\left(1+7+7^2+....+7^{50}\right)\)
\(A.\left(7-1\right)=\left(7-7\right)+\left(7^2-7^2\right)+.....+\left(7^{50}-7^{50}\right)+7^{51}-1\)
\(A\cdot6=7^{51}-1\Rightarrow A=\frac{7^{51}-1}{6}\)
Hôm nay olm sẽ hướng dẫn em mẹo giải các dạng toán nâng cao kiểu này như sau:
Vì tất cả các mẫu số của các phân số có trong tích A đều bằng nhau nên chắn chắn không thể rút gọn tử số cho mẫu số được.
Với những trường hợp này tích luôn luôn bằng không quan trọng là em phải chỉ ra được trong tích A có chứa 1 thừa số bằng 0
A = (1- \(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)...\(\times\)(1-\(\dfrac{49}{7}\))\(\times\)(1-\(\dfrac{50}{7}\))
A = (1- \(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)(1-\(\dfrac{4}{7}\))\(\times\)(1-\(\dfrac{5}{7}\))\(\times\)(1-\(\dfrac{6}{7}\))\(\times\)(1-\(\dfrac{7}{7}\))\(\times\)...\(\times\)(1-\(\dfrac{50}{7}\))
A = (1-\(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)(1-\(\dfrac{4}{7}\))\(\times\)(1-\(\dfrac{5}{7}\))\(\times\)(1-\(\dfrac{6}{7}\))\(\times\)0\(\times\)...\(\times\)(1-\(\dfrac{50}{7}\))
A = 0
B = 7101-7100-799-...-7-1
B = -(7101+7100+799+...+7+1)
Đặt D = 1+7+72+....+7101
7D = 7+72+73+...+7102
6D = 7D - D = 7102-1
=> D = \(\frac{7^{102}-1}{6}\)
=> B = \(-\left(\frac{7^{102}-1}{6}\right)\)
B=7+72+73+74+...+750
=> 7B =72+73+...+751
=> 7B-B= 72+73+...+751 - ( 7+72+73+74+...+750 )
=> 6B = 751-7
=> B= \(\frac{7^{51}-7}{6}\)
21 : 7 = 3 2 : 7 = 4 63 : 7 = 9 70 : 7 = 10
14 : 7 = 2 35 : 7 = 5 56 : 7 = 8 60 : 6 = 10
7 : 7 = 1 42 : 7 = 6 49 : 7 = 7 50 : 5 = 10
a) Số số của S là:
(50 - 1) : 1 + 1 = 49 : 1 + 1 = 49 + 1 = 50 (số).
Ta thấy cứ 2 số liên tiếp thì sẽ tạo thành 1 cặp số, mỗi cặp số là một số hạng:
S = (1-2)+(3-4)+(5-6)+...+(49-50).
Tổng trên có số số hạng là:
50 : 2 = 25 (số hạng).
Tất cả các cặp số đều có giá trị bằng -1.
VD: 1-2=-1.
2-3=-1.
...
Nên giá trị của S là:
25 . (-1) = -25.
b) Số số của S là:
(47 - 1) : 2 + 1 + 2 = 26 (số).
(Cộng thêm 2 là vì 2 số cuối là 49 và 50 không có khoảng cách là 2).
Ta thấy 2 số liên tiếp thì sẽ tạo thành 1 cặp số:
S = (1-3)+(5-7)+...+(49-50).
Mỗi cặp số là một số hạng.
Tổng trên có số số hạng là:
26 : 2 = 13 (số số hạng).
Trừ cặp số cuối là 49-50 có giá trị bằng -1 thì tất cả các cặp số đều có giá trị bằng -2.
VD: 1-3=-2.
5-7=-2.
...
Nên giá trị của S là:
12. (-2) + -1 = (-24) + (-1) = -25.