K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2019

ĐKXĐ: ...

\(E=x-2005-\sqrt{x-2005}+\frac{1}{4}+\frac{8019}{4}\)

\(E=\left(\sqrt{x-2005}-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

\(E_{min}=\frac{8019}{4}\) khi \(x=\frac{8021}{4}\)

\(F=\sqrt{\left(2-x\right)^2}+\sqrt{\left(x+5\right)^2}\)

\(F=\left|2-x\right|+\left|x+5\right|\ge\left|2-x+x+5\right|=7\)

\(F_{min}=7\) khi \(-5\le x\le2\)

8 tháng 5 2019

\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)

\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)

\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)

\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)

\("="\Leftrightarrow x=3\)

a: TH1: x>=2

A=x+x-2=2x-2

TH2: x<2

A=x+2-x=2

b: TH1: x>=3

A=x-3-x=-3

TH2: x<3

A=3-x-x=-2x+3

c: TH1: x>=1

C=x-x+1=1

TH2: x<1

C=x+x-1=2x-1

d: TH1: m>=3

C=m-3-2m=-3-m

TH2: m<3

C=-m+3-2m=-3m+3

e: TH1: m>=1

E=m-m+1=1

TH2: m<1

E=m+m-1=2m-1

22 tháng 6 2017

c/ \(C=\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}\)

\(=|3-x|+|x+5|\ge|3-x+x+5|=8\)

d/ \(D=\sqrt{x^2-6x+9}+\sqrt{4x^2+24x+36}\)

\(=\sqrt{\left(x-3\right)^2}+\sqrt{4\left(x+3\right)^2}\)

\(=|3-x|+|x+3|+|x+3|\ge|3-x+x+3|+0=6\)

e/ \(2E=\sqrt{x^2}+2\sqrt{x^2-2x+1}\)

\(=\sqrt{x^2}+2\sqrt{\left(x-1\right)^2}\)

\(=|x|+|1-x|+|x-1|\ge|x+1-x|+0=1\)

\(\Rightarrow E\ge\frac{1}{2}\)

11 tháng 7 2023

1, \(\sqrt{4-4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)

\(\Leftrightarrow\left|2+x\right|=3\)

TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)

Pt trở thành:

\(2-x=3\) (ĐK: \(x\le2\) )

\(\Leftrightarrow x=2-3\)

\(\Leftrightarrow x=-1\left(tm\right)\)

TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)

Pt trở thành:

\(-\left(2-x\right)=3\) (ĐK: \(x>2\))

\(\Leftrightarrow-2+x=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{-1;5\right\}\)

11 tháng 7 2023

Bài 1 sai dấu em ơi

19 tháng 6 2023

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

18 tháng 6 2023

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3

a: =>|2x-1|=3

=>2x-1=3 hoặc 2x-1=-3

=>2x=-2 hoặc 2x=4

=>x=2 hoặc x=-1

c: \(\Leftrightarrow\left|x-3\right|=11-x\)

=>x<=11 và (x-3)^2=(11-x)^2

=>x<=11 và x^2-6x+9=x^2-22x+121

=>x<=11 và 16x=112

=>x=7

d:

ĐKXĐ: 3x+19>=0

=>x>=-19/3

PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9

=>x>=-3 và x^2+6x+9-3x-19=0 

=>x>=-3 và (x+5)(x-2)=0

=>x=2

e: =>\(\sqrt{x^2+x+5}=x+1\)

=>x>=-1 và x^2+x+5=x^2+2x+1

=>x>=-1 và 2x+1=x+5

=>x=4