Tam giác ABC có B+C=A tia p/g cắt AB tại D tính ADC và BDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(\widehat{C}=2\cdot\widehat{B}\)
Xét ΔABC có \(\widehat{B}+\widehat{C}=\widehat{A}\)
mà \(\widehat{B}+\widehat{C}+\widehat{A}=180^0\)
nên \(\widehat{A}=\dfrac{180^0}{2}=90^0\)
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(2\cdot\widehat{B}+\widehat{B}=90^0\)
=>\(\widehat{B}=30^0\)
=>\(\widehat{C}=90^0-30^0=60^0\)
b: Sửa đề: Tia phân giác góc C cắt AB tại D
CD là phân giác của góc ACB
=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)
ΔACD vuông tại A
=>\(\widehat{ADC}+\widehat{ACD}=90^0\)
=>\(\widehat{ADC}+30^0=90^0\)
=>\(\widehat{ADC}=60^0\)
\(\widehat{ADC}+\widehat{BDC}=180^0\)(hai góc kề bù)
=>\(\widehat{BDC}+60^0=180^0\)
=>\(\widehat{BDC}=120^0\)
1, Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc tam giác)
\(\Leftrightarrow\widehat{C}+90^o+\widehat{C}=180^o\)
\(\Leftrightarrow2\widehat{C}=90^o\)
\(\Leftrightarrow\widehat{C}=45^o\)
\(\Rightarrow\widehat{A}=\widehat{C}+10=55^o\)
\(\Rightarrow\widehat{B}=180^o-\widehat{A}-\widehat{C}=180^o-55^o-45^o=80^o\)
2,
A B C M 1 1
Vì tam giác ABC vuông tại A
=> ^B + ^C = 90o
Vì BM là phân giác ^ABC
=>^B1 = \(\frac{\widehat{ABC}}{2}\)
Tương tự ^C1 = \(\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)
Theo tổng 3 góc trong tam giác \(\widehat{BMC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-45^o=135^o\)
góc ACB=180-50-60=70 độ
góc BCD=góc ACD=70/2=35 độ
góc ADC=góc B+góc DCB=60+35=95 độ
góc BDC=180-95=85 độ
A B C I D 1 1 1 2
a, Có ^ABC + ^ACB + ^BAC = 180 (tổng 3 góc trong tg)
=> 60 + ^ACB + 80 =180
=> ^ACB = 40
Do là p/g nên ^B1 = ^ABC /2 = 60/2 = 30
^C1 = ^ACB / 2 = 40/2 = 20
Có ^I1 + ^B1 + ^C1 = 180
=> ^I1 + 30 + 20 = 180
=> ^I1 = 130
b, Do ^I2 kề bù vs ^I1
=> ^I2 = 180 - ^I1 = 180 - 130 = 50
Vì BD là p/g góc ngoài của ^B
=> BD vuông góc BI (đường p/g góc trong và ngoài vg góc vs nhau)
=> ^D + ^I2 = 90
=> ^D + 50 = 90
=> ^D = 40
=> ^D = ^ACB (ĐPCM)