Chứng minh biểu thức đúng với mọi x,y
x2+x+2>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
3x^2+5y^2-4xy-4x+4y+7=x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
=(x-2y)2+2(x2-2x+1)+(y+2)2+1
=(x+2y)2+2(x-1)2+(y+2)2+1\(\ge\)1(với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1>0 với mọi x,y
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
\(x^4+x^2+1=\left(x^4+2.x^2+\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2+xy+y^2+1=\left(x^2+2.x.\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
\(x^2+x+2\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}>0;\forall x\)
Vậy ...
mình cách cách giải khác không biết có đúng k
Ta có: x2+x+2 >0
=\(x^2+x+\frac{1}{2}+\frac{3}{2}\)
=[x2+2.\(\frac{1}{2}\).x +\(\frac{1}{4}\)] +\(\frac{3}{2}\)
=(x+\(\frac{1}{2}\))2 +\(\frac{3}{2}\)
Vì (x+\(\frac{1}{2}\))2 \(\ge0.Vx,y\)
nên (x+1 phần 2)2 > 0 với mọi x,y
mọi người xem thử rồi cho mình ý kiến nha
lần đầu giải toán kiểu này nên tùm lum quá mn thông cảm >.<