K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng:

\(\sqrt{x}-3\)   1  -1  2   -2   4   -4
\(\sqrt{x}\)  4  2  5  1  7 -1 (loại)
x 16 4 25 1 49 

Vậy ....

17 tháng 1 2020

2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Do x2 + 3 \(\ge\)3  \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)

=> \(1+\frac{12}{x^2+3}\le5\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Max B = 5 khi x = 0

30 tháng 3

a) A=
\(\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right)\colon\frac{\sqrt{x}+1}{\sqrt{x}-5},x\pm25,x\ge0\), MTC=x-25
\(=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2\left(\sqrt{x}-5\right)}{x-25}\right)\colon\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
=\(\left(\frac{15-\sqrt{x}}{x-25}+\frac{2\sqrt{x}-10}{x-25}\right)\colon\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
=\(\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{x-25}\right)\colon\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
=\(\frac{5+\sqrt{x}}{x-25}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
=\(\frac{5+\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
=\(\frac{1}{\sqrt{x}+1}\)

30 tháng 3

Bạn thử tham khảo bài của tôi nhé :
b) M=A-B hay
M=\(\frac{1}{\sqrt{x}+1}-\frac{1-\sqrt{x}}{1+\sqrt{x}}\)
đkxd\(x\ge0,x\pm25\)
=\(\frac{1-1+\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(\frac{\sqrt{x}}{\sqrt{x}+1}=1+\frac{-1}{\sqrt{x}+1}\)
Để \(\frac{\sqrt{x}}{\sqrt{x}+1}\) nguyên thì \(\frac{-1}{\sqrt{x+1}}\) nguyên \(hay\sqrt{x}+1\inƯ\left(-1\right)\)
\(\rarr\sqrt{x}+1\in\left.\begin{cases}\\ \end{cases}-1;1\right)\)
+) \(Với\) \(\sqrt{x}+1=-1,\lrArr\sqrt{x}=-2\) (vô lí)
+)\(Với\) \(\sqrt{x}+1=1\lrArr\sqrt{x}=0\rarr x=0\)
Vậy để M nguyên thì \(x=0\)

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3x+3\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(-3\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\in z\)

\(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}=\frac{-3\sqrt{x}-9+11}{\sqrt{x}+3}=-3+\frac{11}{\sqrt{x}+3}\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(11\right)=\left(-11;-1;1;11\right)\)

\(\sqrt{x}+3=-11\Rightarrow\sqrt{x}=-14VN\)

\(\sqrt{x}+3=-1\Rightarrow\sqrt{x}=-4VN\)

*\(\sqrt{x}+3=1\Rightarrow\sqrt{x}=-2VN\)

*\(\sqrt{x}+3=11\Rightarrow\sqrt{x}=8\Rightarrow x=64\)

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

DD
10 tháng 6 2021

\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)

\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)

\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)

Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).

Từ đây suy ra giá trị của \(x\)