3x^2-6x+7
tính GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2+6x+7\)
\(A=\left(3x^2+6x+3\right)+4\)
\(A=3\left(x^2+2x+1\right)+4\)
\(A=3\left(x+1\right)^2+4\)
\(\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow A\ge4\)
dấu "=" xảy ra khi :
(x + 1)2 = 0 => x + 1 = 0 => x = -1
vậy gtnn của A = 4 khi x = -1
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
\(A=x^2+6x+10\)
\(=\left(x^2+2.x.3+3^2\right)-3^2+10\)
\(=\left(x+3\right)^2+1\)
\(Có:\left(x+3\right)^2\ge0\) \(\text{với mọi x}\)
\(\Rightarrow\left(x+3\right)^2+1\ge0+1=1\text{với mọi x}\)
\(\text{GTNN của biểu thức A là 1}\)
\(\text{khi x+3=0 hay x=-3}\)
\(B=3x^2+15x+7\)
\(=3\left(x^2+5x+\frac{7}{3}\right)\)
\(=3\left[x^2+2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\left(\frac{5}{2}\right)^2+\frac{7}{3}\)
\(=3\left(x+\frac{5}{2}\right)^2-\frac{47}{12}\)
\(Có:\left(x+\frac{5}{2}\right)^2\ge0\) \(\text{với mọi x}\)
\(\Rightarrow3\left(x+\frac{5}{2}\right)^2-\frac{47}{12}\ge3.0-\frac{47}{12}=-\frac{47}{12}\text{với mọi x}\)
\(\Rightarrow\text{GTNN của biểu thức B là -}\frac{47}{12}\)
\(\text{khi}x+\frac{5}{2}=0hayx=-\frac{5}{2}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
\(A=4x^2+y^2+4x+2y+7\)
\(=\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+5\)
\(=\left(2x+1\right)^2+\left(y+1\right)^2+5\ge5\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)
Vậy \(Min_A=5\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)
\(B=6x+3x^2+4\)
\(=3\left(x^2+2x+1\right)+1\)
\(=3\left(x+1\right)^2+1\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_B=1\Leftrightarrow x=-1\)
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4