Tìm b biết : a+b = a.b = \(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{3}=\frac{b}{4}=k\)=> \(\hept{\begin{cases}a=3k\\b=4k\end{cases}}\) (*)
Khi đó, ta có: ab = 48
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2\)
Thay \(k=\pm2\) vào (*), ta được :
\(\hept{\begin{cases}a=3.\left(\pm2\right)=\pm6\\b=4.\left(\pm2\right)=\pm8\end{cases}}\)
Vậy ...
Đặt \(\frac{a}{3}=k\rightarrow a=3k\)
\(\frac{b}{4}=k\rightarrow b=4k\)
Ta có: a.b = 48
<=> 3k.4k = 48
<=> 12k^2 = 48
<=> k^2 = 4
<=> k = \(\pm2\)
Với k = 2 -> a = 3 . 2 = 6; b = 4 . 2 = 8
Với k = -2 -> a = 3 . (-2) = -6; b = 4 . (-2) = -8
Vậy a = 6 hoặc a = -6
b = 8 hoặc b = -8
Bài 1:
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\\ =\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1\)
Bài 2:
\(\frac{a}{5}+1=\frac{1}{b-1}\\ \Rightarrow \frac{a+5}{5}=\frac{1}{b-1}\\ \Rightarrow (a+5)(b-1)=5\)
Vì $a,b$ là số tự nhiên nên $a+5, b-1$ là số nguyên. Mà tích của chúng bằng 5 nên $a+5$ là ước của $5$ (1)
Vì $a$ là số tự nhiên nên $a+5$ là số tự nhiên và $a+5\geq 5$ (2)
Từ $(1); (2)\Rightarrow a+5=5$
$\Rightarrow a=0$
$b-1=\frac{5}{5}=1\Rightarrow b=2$
a) ta có :
các tích nhân lại = 15 là :
1x15=15 ; 3 x 5 =15
mà trong các trường hợp trên chẳng có a ;b nào thỏa mãn a-b=12 => a;b ko tồn tại
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
rút gọn 32 phần 48 thành 2 phần 3
Vì 2 phần 3 = a phần b
=>a=2k;b=3k (k thuộc N*) (1)
Vì BCNN (a;b) nhân với ƯCLN (a;b)=486
=>a nhân b=486
Từ (1) =>2k nhân 3k = 486
6kk=486
kk=486 : 6=81=9 nhân 9
=>k=9
=>a=2 nhân 9= 18
b=3 nhân 9=27
vậy a=18;b=27