K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2022

hok

13 tháng 7 2016

thì cj chứng tỏ nó chia hết cho 2 và 7 thì đc rồi , 

13 tháng 7 2016

là sao bạn nhỉ

15 tháng 5 2019

mk đăng ảnh ko được nên ko đăng được

10 tháng 7 2019

LÚC mk kéo ảnh ra khung thì bị mất nút chèn vào bài

18 tháng 1 2018

Trong toán học, một bất đẳng thức là một phát biểu về quan hệ thứ tự giữa hai đối tượng

18 tháng 1 2018

Bất đẳng thức : 
+ Là những biểu thức luôn đúng với mọi giá trị ( x ; y ; z;...) 

hok tốt !

28 tháng 1 2016

Vao thong tin tai khoan

Tick nha

Hình như có

9 tháng 4 2020

chắc là được

2 tháng 9 2015

cau chy là cầu chì à 

2 tháng 9 2015

Bất đẳng thức Cau chy cho số a,b,c không âm là:

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

Đặt \(a=x^3;b=y^3;c=z^3\)

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{x^3+y^3+z^3}{3}\ge xyz\)\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\ge0\)

Do a,b,c \(\ge\)0 nên x,y,z\(\ge\)0 do đó:\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\ge0\)(đúng)

Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) . Dấu bằng xảy ra khi và chỉ khi a=b=c

14 tháng 4 2016

bạn ko được đăng mấy cái câu hỏi lên đay

nếu cần hỏi thì bạn hỏi người thân của mình í

5 tháng 2 2022

\(không\) \(dùng\) \(bđt\) \(làm\) \(sao\) \(ra\) \(được\) ??

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}.\sqrt{\left(1+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(bunhiacopki\right)\)

\(tương-tự:\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(bđt:cosi\Rightarrow16a+\dfrac{4}{a}\ge2\sqrt{16a.\dfrac{4}{a}}=2\sqrt{16.4}=16\)

\(tương-tự\Rightarrow16b+\dfrac{4}{b}\ge16;16c+\dfrac{4}{c}\ge16\)

\(có:a+b+c\le\dfrac{3}{2}\Rightarrow15\left(a+b+c\right)\le\dfrac{45}{2}\)

\(\Rightarrow-15\left(a+b+c\right)\ge-\dfrac{45}{2}\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(dấu"="xayra\Leftrightarrow a=b=c=\dfrac{1}{2}\)

các bước ban đầu dùng bunhia chọn được 1+4^2 là do dự đoán được trước điểm rơi tại a=b=c=1/2 thôi bạn,cả bước tách dùng cosi cũng dự đoán dc điểm rơi =1/2 nên tách đc thôi

 

5 tháng 2 2022

Tại sao lại k được dùng nhỉ? Trông khi dùng thì bài toán sẽ dễ giải quyết hơn

 

Áp dụng Bunhiacopxki:

     \(\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(\dfrac{1}{4}+4\right)}\ge\dfrac{a}{2}+\dfrac{2}{b}\)

     \(\Rightarrow\sqrt{a^2+\dfrac{1}{b^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{a}{2}+\dfrac{2}{b}\right)\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

Ta có:  \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

     \(\Rightarrow Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+\dfrac{18}{a+b+c}\right]\)

 Áp dụng Cô-si:

      \(\dfrac{a+b+c}{2}+\dfrac{9}{8\left(a+b+c\right)}\ge\dfrac{3}{2}\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8\left(a+b+c\right)}\right]\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8.\dfrac{3}{2}}\right]=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)