K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

đặt x+y=a; xy=b; ta có \(b\le\frac{a^2}{4}\)

B = \(a^2-b-3a+2019\ge a^2-\frac{a^2}{4}-3a+2019=\frac{3}{4}\left(a-2\right)^2+2016\)\(\ge2016\)

B đạt GTNN khi a= \(2;a^2=4b\) <=> x=y = 1

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

NV
6 tháng 11 2021

\(A=x^2+y^2+xy-3x-3y+2-18\)

\(=\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)+2015\)\(=\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+2015\ge2015\)

\(A_{min}=2015\) khi \(\left(x;y\right)=\left(1;1\right)\)

5 tháng 10 2018

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

12 tháng 10 2019

Ta có :

\(B=x^2+xy+y^2-2x-3y+2019\)

\(\Leftrightarrow4B=4x^2+4xy+4y^2-8x-12y+8076\)

\(\Leftrightarrow4B=\left(4x^2+4xy+y^2\right)-4\left(2x+y\right)+4+3y^2-4y+4022\)

\(\Leftrightarrow2B=\left(2x+y\right)^2-4\left(2x+y\right)+4+3\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{12062}{3}\)

\(\Leftrightarrow2B=\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2+\frac{12062}{3}\ge\frac{12062}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{2}{3}\)

Bạn kiểm tra lại nhé, mình k chắc có đúng k nữa !