tìm gtln ( gtnn)
B = x^2 -3x + y^2 -3y + xy + 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
\(A=x^2+y^2+xy-3x-3y+2-18\)
\(=\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)+2015\)\(=\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+2015\ge2015\)
\(A_{min}=2015\) khi \(\left(x;y\right)=\left(1;1\right)\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Ta có :
\(B=x^2+xy+y^2-2x-3y+2019\)
\(\Leftrightarrow4B=4x^2+4xy+4y^2-8x-12y+8076\)
\(\Leftrightarrow4B=\left(4x^2+4xy+y^2\right)-4\left(2x+y\right)+4+3y^2-4y+4022\)
\(\Leftrightarrow2B=\left(2x+y\right)^2-4\left(2x+y\right)+4+3\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{12062}{3}\)
\(\Leftrightarrow2B=\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2+\frac{12062}{3}\ge\frac{12062}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{2}{3}\)
Bạn kiểm tra lại nhé, mình k chắc có đúng k nữa !
đặt x+y=a; xy=b; ta có \(b\le\frac{a^2}{4}\)
B = \(a^2-b-3a+2019\ge a^2-\frac{a^2}{4}-3a+2019=\frac{3}{4}\left(a-2\right)^2+2016\)\(\ge2016\)
B đạt GTNN khi a= \(2;a^2=4b\) <=> x=y = 1