Chứng tỏ:
Căn bậc hai của 2.3 là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
tích mik nha
Giả sử \(\sqrt{10}\)là số hữu tỉ \(\Rightarrow\sqrt{10}=\frac{a}{b}\) ( vs \(\frac{a}{b}\)là phân số tối giản, \(a,b\in Z;b\ne0\))
Ta có \(\frac{a}{b}=\sqrt{10}\Rightarrow\left(\frac{a}{b}\right)^2=10\Rightarrow\frac{a^2}{b^2}=10\Rightarrow a^2=10b^2\)
=> \(a^2\) là số chẵn ( vì 10 là số chẵn)
\(\Rightarrow a\) chẵn ( do căn bậc hai của 1 số chẵn là số chẵn) (1)
\(\Rightarrow a=2k\left(k\in Z\right)\)
Thay a = 2k vào \(a^2=10b^2\) ta có
\(\left(2k\right)^2=10b^2\)
\(\Rightarrow4k^2=10b^2\)
\(\Rightarrow2k^2=5b^2\)
\(\Rightarrow5b^2\) là số chẵn
\(\Rightarrow b^2\) là số chẵn
\(\Rightarrow b\) chẵn ( do do căn bậc hai của 1 số chẵn là số chẵn ) (2)
Từ (1) và (2) => Phân số \(\frac{a}{b}\) chưa tối giản vs giả thiết đưa ra
Vậy \(\sqrt{10}\) là số vô tỉ
Có j sai sót mong bỏ qua
~ HAPPY NEW YEAR ~