tìm x,y,z nguyên dương biết x2+y2=z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P = 1 x ( 1 z 2 + 1 y 2 ) + 1 y ( 1 z 2 + 1 x 2 ) + 1 z ( 1 x 2 + 1 y 2 )
Đặt: 1 x = a ; 1 y = b ; 1 z = c thì a,b,c>0 và a2+b2+c2=1
P = a b 2 + c 2 + b c 2 + a 2 + c a 2 + b 2 = a 2 a ( 1 − a 2 ) + b 2 b ( 1 − b 2 ) + c 2 c ( 1 − c 2 )
Áp dụng bất đẳng thức Côsi cho 3 số dương ta có:
a 2 1 - a 2 2 = 1 2 .2 a 2 ( 1 − a 2 ) ( 1 − a 2 ) ≤ 1 2 2 a 2 + 1 − a 2 + 1 − a 2 3 = 4 27 = > a ( 1 − a 2 ) ≤ 2 3 3 < = > a 2 a ( 1 − a 2 ) ≥ 3 3 2 a 2 ( 1 )
Tương tự: b 2 b ( 1 − b 2 ) ≥ 3 3 2 b 2 ( 2 ) ; c 2 c ( 1 − c 2 ) ≥ 3 3 2 c 2 ( 3 )
Từ (1); (2); (3) ta có P ≥ 3 3 2 ( a 2 + b 2 + c 2 ) = 3 3 2
Đẳng thức xảy ra a = b = c = 1 3 h a y x = y = z = 3
Vậy giá trị nhỏ nhất của P là 3 3 2
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s:
x ≥ y ≥ z
Vì x2 + y2 + z2 = 14 =>
x 2 ≤ 14
⇒ x ≤ √ 14 < 4
Vì x nguyên dương
=> x ∈ { 1; 2; 3}
+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5
TL
HT ( sai thì cho mik xin lỗi nhìu )
⇒(x2+1x2−2)+(y2+1y2−2)+(z2+1z2−2)=0⇒(x2+1x2−2)+(y2+1y2−2)+(z2+1z2−2)=0
⇒(x−1x)2+(y−1y)2+(z−1z)2=0⇒(x−1x)2+(y−1y)2+(z−1z)2=0
⇒\hept⎧⎪ ⎪⎨⎪ ⎪⎩x−1x=0y−1y=0z−1z=0⇒\hept⎧⎪ ⎪⎨⎪ ⎪⎩x=1xy=1yz=1z⇒\hept⎧⎨⎩x2=1y2=1z2=1⇒x=y=z=1⇒\hept{x−1x=0y−1y=0z−1z=0⇒\hept{x=1xy=1yz=1z⇒\hept{x2=1y2=1z2=1⇒x=y=z=1 (vì x,y,z >