K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

Câu hỏi của Solyver - Toán lớp 7 - Học toán với OnlineMath

3 tháng 1 2023

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

3 tháng 1 2023

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

21 tháng 10 2019

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

NV
26 tháng 3 2023

BĐT cần chứng minh tương đương:

\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le1\)

Ta có:

\(\dfrac{a}{a+\sqrt{3a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)

\(=\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự:

\(\dfrac{b}{b+\sqrt{3b+ca}}\le\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng vế:

\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

20 tháng 10 2019

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

10 tháng 8 2016

Hình như đề sai ,  giả sử a = b = c = 0

=> vế trái bằng 0 , vé phải bằng 24

10 tháng 8 2016

\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

21 tháng 10 2019

Câu hỏi của Solyver - Toán lớp 7 - Học toán với OnlineMath