tìm x biết:
|5x-3|\(\ge\)7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x - 1 | + | x - 4 | = 3x
=> x - 1 + x - 4 = 3x
(x + x ) - ( 1 + 4 ) = 3x
2x - 5 = 3x
5 = 3x + 2x
5 = 5x
=> x = 5 : 5
=> x = 1 hoặc -1
Những bài kia cũng tương tự mình nghĩ k quá khó đâu !!
|5x-3|≥≥7
TH1: 5x-3\(\ge7\)
<->x \(\ge2\)
TH2:5x-3\(\ge-7\)
<-> x\(\ge\frac{-4}{5}\)
Ta có: \(\left|5x-3\right|\ge7\)
\(\Rightarrow\left[{}\begin{matrix}5x-3\ge7\\5x-3\le-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}5x\ge10\\5x\le-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-0,8\end{matrix}\right.\)
Vì x∈Z nên \(x\ge2\)
Vậy: \(x\ge2\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
Ta có
\(xy-7y+5x=0\)
\(\Leftrightarrow y=\frac{5x}{7-x}=-5+\frac{35}{7-x}\ge3\)
\(\Leftrightarrow\frac{35}{7-x}\ge8\Leftrightarrow7-x\le4\)
Vậy ta sẽ tìm x sao cho 7 - x là ước của 35 và \(0< 7-x\le4\)
\(\Rightarrow7-x=1\)
\(\Rightarrow x=6\Rightarrow y=30\)
a: =>15x-6-2x-8>=3x-2
=>13x-14>=3x-2
=>10x>=12
=>x>=6/5
b: =>6-7x+28>=3x+6-2x
=>-7x+34>=x+6
=>-8x>=-28
=>x<=7/2
\( \left| {5x - 3} \right| \ge 7\\ \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 5x - 3 \ge 0\\ 5x - 3 \ge 7 \end{array} \right.\\ \left\{ \begin{array}{l} 5x - 3 < 0\\ - \left( {5x - 3} \right) \ge 7 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x \ge \dfrac{3}{5}\\ x \ge 2 \end{array} \right.\\ \left\{ \begin{array}{l} x < \dfrac{3}{5}\\ x \le - \dfrac{4}{5} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \ge 2\\ x \le - \dfrac{4}{5} \end{array} \right. \Leftrightarrow 2 \le x \le - \dfrac{4}{5} \)
1) 5x + 3 = 2(x + 7)
5x + 3 = 2x + 2.7
5x + 3 = 2x + 14
5x - 2x = 14 - 3
3x = 11
x = 11/3
Vậy x = 11/3
2) 5x - 25 = 2x - 3
5x - 2x = -3 + 25
3x = 22
x = 22/3
Vậy x = 22/3
|5x - 3| > 7
<=> 5x - 3 > 7 hoặc -(5x - 3) > 7
<=> 5x > 10 hoặc -5x > 7 - 3
<=> x > 2 hoặc -5x > 4
=> x > 2 hoặc x > -4/5