Tìm x ,y
a) ( x-2 ). ( y+ 1) =19
b) ( x+ 2 ) . ( y+ x- 1)= 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(x+1;y-4\right)\in\left\{\left(1;19\right);\left(19;1\right);\left(-1;-19\right);\left(-19;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;23\right);\left(18;5\right);\left(-2;-15\right);\left(-20;3\right)\right\}\)
b: \(\Leftrightarrow\left(2x+1;y-5\right)\in\left\{\left(1;23\right);\left(23;1\right);\left(-1;-23\right);\left(-23;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;28\right);\left(11;6\right);\left(-1;-18\right);\left(-12;4\right)\right\}\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Lời giải:
a.
\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)
$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix}
x^2-1=(x-1)(x+1)\neq 0\\
7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\neq \pm 1\\
x\leq \frac{7}{2}\end{matrix}\right.\)
c.
\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)
d.
\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)
Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)
Nguyễn Khắc Vinh nó giải vớ vớ vẩn đấy dừng tin Trường tiểu học Yên Trung số 2 Bắc Ninh
thế bạn có biết làm ko giúp mình với
a/ chuyển về (3-x).(y+3)=9 (dài dòng nên k làm đâu)
b/ xy+x+y=8
x.(y+1)+y+1=9
x.(y+1)+(y+1)=9
(x+1).(y+1)=9
c/(x,y)={(3;5),(4;4)}
mở vào câu hỏi tương tự là có