K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x+y\right)^2+3.\left(x+y\right)+2\)

\(=\left(x+y\right)^2+2.\frac{3}{2}.\left(x+y\right)+2\)

\(=\left(x+y\right)^2+2.\frac{3}{2}.\left(x+y\right)+2+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)

\(=\left(x+y\right)^2+2.\frac{3}{2}.\left(x+y\right)+\left(\frac{3}{2}\right)^2-\frac{1}{4}\)

\(=\left(x+y+\frac{3}{2}\right)^2-\frac{1}{4}\)

\(=\left(x+y+\frac{3}{2}+\frac{1}{2}\right)\left(x+y+\frac{3}{2}-\frac{1}{2}\right)\)

\(=\left(x+y+2\right)\left(x+y+1\right)\)

P/s Tham khảo nha e<3

17 tháng 10 2019

\(\left(x+y\right)^2+3\left(x+y\right)+2\)

\(=x^2+2xy+y^2+3x+3y+2\)

31 tháng 7 2019

\(\left|x+\frac{9}{2}\right|\ge0\)

\(\left|y+\frac{3}{4}\right|\ge0\)

\(\left|z+\frac{7}{2}\right|\ge0\)

Mà \(\left|x+\frac{9}{2}\right|+\left|y+\frac{3}{4}\right|+\left|z+\frac{7}{2}\right|\le0\)

\(\Rightarrow\hept{\begin{cases}x+\frac{9}{2}=0\\y+\frac{3}{4}=0\\z+\frac{7}{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{3}{4}\\z=-\frac{7}{2}\end{cases}}}\)

a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x

=> ( x-2)2 +2023 \(\ge\) 2023

Vậy ...

Dấu bằng xảy ra khi x-2 = 0

b. (x-3)2+(y-2)2-2018

Ta có: \((x-3)^2 \ge0,\forall x\)

           \((y-2) ^2 \ge0,\forall y\) 

=> ( x-3)2 + ( y-2)2 \(\ge\) 0

=>  ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y 

Vậy ...

Dấu bằng xảy ra khi x-3=0

                                 y-2=0

c. ( x+1)2 +100

Ta có : ( x+1)2 \(\ge0,\forall x\) 

=> ( x+1)2+100 \(\ge\) 100

Vậy ...

Dấu bằng xảy ra khi x+1=0

31 tháng 7 2019

d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)

\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)

Đặt  \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)

\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)

Hay \(F\ge\frac{1}{4}\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )

\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)

Đặt \(E=|y-\frac{1}{5}|\)

Vì \(|y-\frac{1}{5}|\ge0;\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)

                          \(\Leftrightarrow y=\frac{1}{5}\)

\(\Rightarrow F+E\ge\frac{1}{4}\)

Hay \(D\ge\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

31 tháng 7 2019

Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em

25 tháng 7 2018

\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)

\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)

\(=x^{33}.y^{31}\)

3 tháng 11 2016

a/ Để hàm số này là hàm bậc nhất thì

\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)

Các câu còn lại làm tương tự nhé bạn

3 tháng 11 2016

NHAMMATTAOCUNGLAMDUOC

6 tháng 11 2015

(x+y+z)2 - x2-y2-z2 = x2+y2+z2+2xy+2yz+2zx -x2-y2-z2= 2(xy+yz+zx)

6 tháng 11 2015

cứ lên mạng gõ cả bài ra,,hoặc vô phần nâng cao là có

25 tháng 7 2021

\(\left(a-b\right)^2+2\left(x+y+z\right)\left(a-b\right)+\left(x+y+z\right)^2\)

\(=\left(a-b+x+y+z\right)^2\)

\(\left(x+y+z\right)^2+2\left(x+y+z\right)\left(a-b\right)+\left(a-b\right)^2\)

\(=\left(x+y+z+a-b\right)^2\)