K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

\(x^2\left(x-1\right)-4x^2+8x-4=0\)

\(x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

15 tháng 10 2019

\(x^2\left(x-1\right)-4x^2+8x-4=0\)

<=> \(x^3-x^2-4x^2+8x-4=0\)

<=> \(x^3-5x^2+8x-4=0\)

<=>\(x^3-x^2-4x^2+4x+4x-4=0\)

<=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

<=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

<=>\(\left(x-1\right)\left(x-2\right)^2=0\)

<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\) 

ĐKXĐ: \(x\notin\left\{2;-2;0;3\right\}\)

Ta có: \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)

\(=\left(\dfrac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{x}{3-x}\)

\(=\dfrac{-4x^2}{3-x}\)

Để P<0 thì \(\dfrac{-4x^2}{3-x}< 0\)

mà \(-4x^2< 0\forall x\) thỏa mãn ĐKXĐ

nên 3-x<0

hay x>3

Kết hợp ĐKXĐ, ta được: x>3

Vậy: Để P<0 thì x>3

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

1:

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)

=>x-3=0 hoặc \(\sqrt{x+3}=2\)

=>x=3 hoặc x+3=4

=>x=1(loại) hoặc x=3(nhận)

2:

\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)

=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)

=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)

=>4(12x^2-16x+3x-4)=(7x-6)^2

=>49x^2-84x+36=48x^2-52x-16

=>-84x+36=-52x-16

=>-32x=-52

=>x=13/8

3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)

=>|x-5|=5-x

=>x-5<=0

=>x<=5

4: \(\Leftrightarrow\left|x-4\right|=x+2\)

=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)

=>x>=-2 và -8x+16=4x+4

=>x=1

14 tháng 5 2018

ĐKXĐ: \(x\ne\pm2;x\ne0\)

\(A=\left[\frac{4x\left(x-2\right)}{x^2-4}-\frac{8x^2}{x^2-4}\right]:\left[\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right]\)

\(=\frac{-4x^2-8x}{x^2-4}:\frac{-x+3}{x\left(x-2\right)}\)

\(=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\frac{x\left(x-2\right)}{-x+3}\)

\(=\frac{4x^2}{x-3}\)

Vì \(4x^2\ge0\)với mọi x nên: 

để A > 0 thì x - 3 >0             <=>        x > 3

27 tháng 10 2018

\(a,x\left(8x-2\right)-8x^2+12=0\)

\(\Rightarrow8x^2-2x-8x^2+12=0\)

\(\Rightarrow-2x+12=0\)

\(\Rightarrow-2x=-12\)

\(\Rightarrow x=6\)

\(b,x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Rightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Rightarrow-9x-1=0\)

\(\Rightarrow-9x=1\)

\(\Rightarrow x=\frac{-1}{9}\)

27 tháng 10 2018

a) x(8 - 2) - 8x2 + 12 = 0

x(8 - 2) - 8x2 = 12 - 0

x(8 - 2) - 8x2 = 12

2x = 12

x = 6

b) x(4x - 5) - (2x + 1)= 0

9x - 1 = 0

9x = 0 + 1

9x = 1

x = -1/9

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

17 tháng 10 2016

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)

b) \(\left(2x-3\right)^2=\left(x-5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x-5\right)^2=0\)

\(\Leftrightarrow\left(2x-3+x-5\right)\left(2x-3-x+5\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{8}{3}\end{array}\right.\)

c) \(x^2\left(x-1\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\end{array}\right.\)

17 tháng 10 2016

có cần " vậy " k ?