Tìm x :
\(x^2\left(x-1\right)-4x^2+8x-4=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{2;-2;0;3\right\}\)
Ta có: \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
\(=\left(\dfrac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{x}{3-x}\)
\(=\dfrac{-4x^2}{3-x}\)
Để P<0 thì \(\dfrac{-4x^2}{3-x}< 0\)
mà \(-4x^2< 0\forall x\) thỏa mãn ĐKXĐ
nên 3-x<0
hay x>3
Kết hợp ĐKXĐ, ta được: x>3
Vậy: Để P<0 thì x>3
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
ĐKXĐ: \(x\ne\pm2;x\ne0\)
\(A=\left[\frac{4x\left(x-2\right)}{x^2-4}-\frac{8x^2}{x^2-4}\right]:\left[\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right]\)
\(=\frac{-4x^2-8x}{x^2-4}:\frac{-x+3}{x\left(x-2\right)}\)
\(=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\frac{x\left(x-2\right)}{-x+3}\)
\(=\frac{4x^2}{x-3}\)
Vì \(4x^2\ge0\)với mọi x nên:
để A > 0 thì x - 3 >0 <=> x > 3
\(a,x\left(8x-2\right)-8x^2+12=0\)
\(\Rightarrow8x^2-2x-8x^2+12=0\)
\(\Rightarrow-2x+12=0\)
\(\Rightarrow-2x=-12\)
\(\Rightarrow x=6\)
\(b,x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Rightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Rightarrow-9x-1=0\)
\(\Rightarrow-9x=1\)
\(\Rightarrow x=\frac{-1}{9}\)
a) x(8 - 2) - 8x2 + 12 = 0
x(8 - 2) - 8x2 = 12 - 0
x(8 - 2) - 8x2 = 12
2x = 12
x = 6
b) x(4x - 5) - (2x + 1)2 = 0
9x - 1 = 0
9x = 0 + 1
9x = 1
x = -1/9
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
a) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
b) \(\left(2x-3\right)^2=\left(x-5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-3+x-5\right)\left(2x-3-x+5\right)=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{8}{3}\end{array}\right.\)
c) \(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\end{array}\right.\)
\(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
\(x^2\left(x-1\right)-4x^2+8x-4=0\)
<=> \(x^3-x^2-4x^2+8x-4=0\)
<=> \(x^3-5x^2+8x-4=0\)
<=>\(x^3-x^2-4x^2+4x+4x-4=0\)
<=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x-1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)