Tìm x
x^2-4x-45=0
Mong các bn giúp mìnhT_T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\\ \Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\\ \Leftrightarrow2\left(x-3\right)=0\\ \Leftrightarrow x=3\)
\(b,4x^2-9=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,x^2+6x+9=0\\ \Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)
a. \(\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\)
\(\Leftrightarrow2\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)
\(<=>2x(x-1)-3(x-1)=0\)
\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)
th2 \(X-1=0<=>x=1\)
pt có tập nghiệm S={3/2;1}
\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)
\(x-1=0\\ \Rightarrow x=1\)
\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)
\(4x^2-4x=-1\)
\(4x^2-4x+1=0\)
\(\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Bài 1:
a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)
b: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
bài 2:
a: Đề thiếu vế phải rồi bạn
b: \(x^3-13x=0\)
=>\(x\left(x^2-13\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)
Bài 1:
a, $3x-6y$
$=3(x-2y)$
b, $14x^2y-21xy^2+28x^2y^2$
$=7xy(2x-3y+4xy)$
c, $10x(x-y)-8y(y-x)$
$=10x(x-y)-8y[-(x-y)]$
$=10x(x-y)+8y(x-y)$
$=(x-y)(10x+8y)$
$=2(x-y)(5x+4y)$
Bài 2:
a, Đề thiếu rồi bạn nhé.
b, \(x^3-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)
\(x+x\cdot3:\dfrac{2}{9}+x:\dfrac{2}{7}=252\)
\(\Leftrightarrow x+x\cdot3\cdot\dfrac{9}{2}+x\cdot\dfrac{7}{2}=252\)
\(\Leftrightarrow x\cdot18=252\)
hay x=14
Đề bài: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|=0\)
PT \(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{1}{6};-8\right)\)
Ta có: \(\left|3x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\left|\dfrac{1}{2}y+4\right|\ge0\forall y\)
Do đó: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)
x^2 - 4x - 45 = 0
<=> (x - 9)(x + 5) = 0
<=> x - 9 = 0 hoặc x + 5 = 0
<=> x = 9 hoặc x = -5