Khảo sát sự biến thiên của hàm số và lập bảng biến thiên
y = x2019 +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-x_2^2-2x_2+2}{x_1-x_2}\)
\(=\left(x_1+x_2\right)-2\)
Vì \(x_1;x_2\in\left(-\infty;1\right)\) thì \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left(x_1+x_2\right)< 2\)
\(\Leftrightarrow\left(x_1+x_2\right)-2< 0\)
Vậy: Hàm số nghịch biến trên \(\left(-\infty;1\right)\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-2x_1^2+4x_1+1+2x_2^2-4x_2-1}{x_1-x_2}\)
\(=\dfrac{-2\left(x_1-x_2\right)\left(x_1+x_2\right)+4\left(x_1-x_2\right)}{x_1-x_2}\)
\(=-2\left(x_1+x_2\right)+4\)
Vì \(x_1;x_2\in\left(1;+\infty\right)\) nên \(\left\{{}\begin{matrix}x_1>1\\x_2>1\end{matrix}\right.\Leftrightarrow x_1+x_2>2\)
\(\Leftrightarrow-2\left(x_1+x_2\right)+4< 0\)
Vậy: Hàm số nghịch biến trên \(\left(1;+\infty\right)\)
TXĐ: D=[0;+\(\infty\))
Hàm số này luôn đồng biến với mọi x thuộc D
y = 4 x + 4 2 x + 1
Tập xác định: D = R \ {−1/2}
Ta có
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −1/2) và (−1/2; + ∞ )
Tiệm cận đứng: x = −1/2;
Tiệm cận ngang: y = 2.
Giao với các trục tọa độ: (0; 4) và (-1; 0)
Đồ thị:
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
\(\forall x_1,x_2\in\left(-\infty;+\infty\right),x_1< x_2\Rightarrow x_1^{2019}< x_2^{2019}\)
\(\Leftrightarrow x_1^{2019}+1< x_2^{2019}+1\Leftrightarrow f\left(x_1\right)< f\left(x_2\right)\Rightarrow\)Hàm đồng biến trên \(\left(-\infty;+\infty\right)\)
BBT là một đường đi lên, bạn tự vẽ nhé