K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Ta có : 

\(8x=\frac{x}{\frac{1}{8}};6y=\frac{y}{\frac{1}{6}};-3z=\frac{z}{-\frac{1}{3}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{6}}=\frac{z}{-\frac{1}{3}}=\frac{x+y+z}{\frac{1}{8}+\frac{1}{6}-\frac{1}{3}}=\frac{9}{-\frac{1}{24}}=-216\)

\(\Rightarrow\hept{\begin{cases}x=\left(-216\right)\cdot\frac{1}{8}=-27\\y=\left(-216\right)\cdot\frac{1}{6}=-36\\z=\left(-216\right)\cdot\left(-\frac{1}{3}\right)=72\end{cases}}\)

Vậy ........

=))

13 tháng 10 2019

\(8x=6y=-3z\) (Cần trừ khử 8, 6 và -3 để có x, y, z)
\(\Rightarrow8x.\frac{1}{24}=6y.\frac{1}{24}=-3z.\frac{1}{24}\)(Tìm BCNN để chia hết được 8, 6, -3 - Tính chất đẳng thức)
\(\Rightarrow\frac{8x}{24}=\frac{6y}{24}=-\frac{3z}{24}\)(Giờ lấy 24 trừ khử 8, 6, -3 - VD: 8x = 24)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{-8}\)(Chắc là bạn hiểu vì sao ra vầy chứ nhỉ ?)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{-8}=\frac{x+y+z}{3+4+\left(-8\right)}=\frac{9}{-1}=-9\)(Đổi x + y + z = 9 - Theo đề, nếu trên tử cả 3 số đều cộng nhau thì mẫu cũng vậy)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-9\Rightarrow x=-9.3=-27\\\frac{y}{4}=-9\Rightarrow y=-9.4=-36\\\frac{z}{-8}=-9\Rightarrow z=-9.\left(-8\right)=72\end{cases}}\)(Cái này có khó hiểu ?)
Vậy x = -27, y = -36, z = 72

13 tháng 10 2019

Vì số 24 \(⋮\)cho 8, 6 và -3
24 : 8 = 3
24 : 6 = 4
24 : (-3) = -8
Đọc lại cách làm của mình để hiểu thêm nhé

13 tháng 10 2019

Ta có :

+) \(8x=6y\)

\(\Rightarrow\frac{y}{8}=\frac{x}{6}\Rightarrow\frac{y}{24}=\frac{x}{18}\left(1\right)\)

+) \(6y=-3z\)

\(\Rightarrow\frac{y}{-3}=\frac{z}{6}\Rightarrow\frac{y}{24}=\frac{z}{-48}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{-48}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{-48}=\frac{x+y+z}{18+24-48}=\frac{9}{-6}=\frac{-3}{2}\)

\(\Rightarrow\hept{\begin{cases}x=18.\frac{-3}{2}\\y=24.\frac{-3}{2}\\z=-48.\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-27\\y=-36\\z=72\end{cases}}\)

Vậy ........................

13 tháng 10 2019

ta có :

\(8x=6y=-3z\Rightarrow\frac{24x}{3}=\frac{24y}{4}=\frac{24z}{-6}=\frac{x}{3}=\frac{y}{4}=\frac{z}{-6}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{-6}=\frac{x+y+z}{3+4+-6}=\frac{9}{1}=9\)

\(\frac{x}{3}=9\Rightarrow x=27\)

\(\frac{y}{4}=9\Rightarrow y=36\)

\(\frac{z}{-6}=9\Rightarrow z=-54\)

13 tháng 10 2019

8x/24=6y/24=-3z/24

x/3=y/4=z/-8

ADTCDTSBN

x/3=y/4=z/-8=x+y+z/3+4-8=9/-1=-9

x/3=-9;x=-27

y/4=-9;y=-36

z/-8=-9;z=72

5 tháng 10 2019

a. \(\frac{x}{3}=\frac{z}{8}\)

và \(-6y=7z\Rightarrow\frac{y}{7}=\frac{z}{-6}\)

\(\frac{x}{3}=\frac{z}{8}\Rightarrow\) \(\frac{x}{3.3}=\frac{z}{8.3}\Rightarrow\frac{x}{9}=\frac{z}{24}\)

\(-6y=7z\Rightarrow\frac{y}{7}=\frac{z}{-6}\Rightarrow\frac{y}{-7.4}=\frac{z}{6.4}\Rightarrow\frac{y}{-28}=\frac{z}{24}\)

=> \(\frac{x}{9}=\frac{y}{-28}=\frac{z}{24}\)

Áp dụng dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{-28}=\frac{z}{24}=\frac{2x-9y}{2.9-9\left(-28\right)}=\frac{2}{270}=\frac{1}{135}\)

=> \(\frac{x}{9}=\frac{1}{135}\Rightarrow x=\frac{1}{15}\)

    \(\frac{y}{-28}=\frac{1}{135}\Rightarrow y=-\frac{28}{135}\)

     \(\frac{z}{24}=\frac{1}{135}\Rightarrow z=\frac{8}{45}\)

b) Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{x}{3}=\frac{y}{3}=\frac{z}{7}=\frac{x+2y+3z}{3+2.3+3.7}=\frac{19}{30}\)

=> \(\frac{x}{3}=\frac{19}{30}\Rightarrow x=\frac{19}{10}\)

   \(\frac{y}{3}=\frac{19}{30}\Rightarrow y=\frac{19}{10}\)

   \(\frac{z}{7}=\frac{19}{30}\Rightarrow z=\frac{133}{30}\)

\(\frac{4}{5x}=\frac{7}{6y}=\frac{2}{3z}\)

=> \(\frac{5x}{4}=\frac{6y}{7}=\frac{3z}{2}\)

=> \(\frac{5x}{4}:30=\frac{6y}{7}:30=\frac{3z}{2}:30\)

=> \(\frac{x}{24}=\frac{y}{35}=\frac{z}{20}=\frac{x+y+z}{24+35+20}=\frac{80}{79}\)

=> \(x=\frac{1920}{79};y=\frac{2800}{79};z=\frac{1600}{79}\)

7 tháng 6 2017

\(\hept{\begin{cases}4x-3z=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\3y=z=x\\2x+3y+4z=19\end{cases}}\)

\(\Leftrightarrow\)2x+x+4x=19 \(\Leftrightarrow\)x=z = \(\frac{19}{7}\)

y=\(\frac{19}{21}\)

7 tháng 6 2017

x= \(\frac{19}{7}\)

y= \(\frac{19}{21}\)

z= \(\frac{19}{7}\)

5 tháng 11 2017

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).

b) Biến đổi được a 4   -   9 rt 3   +   a 2 -9a = (a- 9)a( a 2  +1).

c) Biến đổi được 3 x 2  + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được  x 2  - (a + b)x + ab = (x- a)(x - b).

e) Ta có 4 x 2 - 4xy + y 2   –   9 t 2 =  ( 2 x   -   y ) 2   -   ( 3 t ) 2

= (2x - y - 3t )(2x - y + 31).

g) Ta có  x 3   -   3 x 2 y   +   3 xy 2   -   y 3   -   z 3

= ( x   -   y ) 3   -   z 3 = (x - y - z)( x 2   +   y 2   +   z 2  - 2xy + xz - yz).

h) Ta có x 2   -   y 2 + 8x + 6y+ 7 = ( x 2  +8x + 16) - ( y 2  - 6y+ 9)

= ( x   +   4 ) 2   - ( y - 3 ) 2  =(x-y + 7)(x + y + l).

3 tháng 8 2023

\(\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x-6y=-4-2z\\3x-y=1+3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5y=1+3z+4+2z\\3x-y=1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5y=5+5z\\3x=y+1+3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=1+z\\3x=1+z+1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1+z\\x=\dfrac{4z+6}{3}\end{matrix}\right.\)

\(S=9x^2-8\left(y^2+z^2\right)\)

\(S=9\left(\dfrac{4z+2}{3}\right)^2-8\left[\left(1+z\right)^2+z^2\right]\)

\(S=9.\dfrac{16z^2+16z+4}{9}-8\left[1+2z+z^2+z^2\right]\)

\(S=16z^2+16z+4-8-16z-16z^2\)

\(S=-4\)

3 tháng 8 2023

Đính chính \(x=\dfrac{4z+2}{3}\) không phải \(x=\dfrac{4z+6}{3}\)

12 tháng 6 2016

bạn tham khảo TIM GTLN CUA TONG X+Y+Z BIET X+5Y = 21 ; 2X+3Z = 51 ; X,Y,Z >= 0? | Yahoo Hỏi & Đáp

12 tháng 6 2016

Em mới học lớp 7