tinh mAX A=-x+5\(\sqrt{x}\)+2019-\(\frac{9}{\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đk:x\ge2\)
Đặt \(A=\sqrt{x-2}+2\sqrt{x+1}+2019-x\)
\(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\)
\(=\left[\left(-x+2\right)+2\sqrt{x-2}-1\right]+\left[\left(-x-1\right)+4\sqrt{x+1}-4\right]+4042\)
\(=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+4\right]+4042\)
\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Rightarrow A\le2021\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{x+1}-2=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy \(Max\) của biểu thức trên là 2021, đạt tại x=3.
" m " ở đâu vậy bạn ,sửa đề câu b) : Tìm x để P =\(A-9\sqrt{x}\)
Bài giải
a) ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
= \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy A = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)với x > 0 ; x \(\ne1\)
b) P = A - \(9\sqrt{x}=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
Áp dụng BĐT Côsi : \(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2.3=6\)
Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow1=9x\Leftrightarrow x=\frac{1}{9}\)
=> P \(\ge-5\).Vậy Max P = -5 khi x = \(\frac{1}{9}\)