Cho S =\(1+2+2^2+2^3+...+2^{28}+2^{29}\)
So sánh S với \(5.2^{28}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
=> 2S= 2+2^2+2^3+....+2^29+2^30
=> 2S-S = (2+2^2+2^3+....+2^29+2^30)-(1+2+2^2+2^3+....+2^29)
=> S=2^30-1 (đây là cách tính S, trong bài này không cần thiết)
Ta có: 5.2^8 = 2^8+2^8+2^8+2^8+2^8
Trong S nhất định có tổng 2^8+2^9+2^10+2^11+2^12 > 2^8+2^8+2^8+2^8+2^8
nên S>5.2^8
Ta có : S = 1 +21+22+........+22017
2S= 2 +22+23+.......+22018
2S -S =( 2+22+23+......+22018) - (1+2+22+.......+22017)
S = 22018-1
S =22018- 1
S = 22 . 22016-1
\(\Rightarrow\)S < 5. 22016
Ta có :S= 1+ 2 + 22 + ........+ 22017
Suy ra 2S = 2 + 22 +.......+22018
Suy ra 2S -S = (2-2) + (22-22)+......+(22018 - 1)
Suy ra S=22018-1
2S=2(1+2+22+...+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+...+29)
S=210-1=1024-1=1023
5*28=5*256=1280.Vì 1280>1023
=>5*28>210-1 <=> 5*28>S
2S=2(1+2+22+23+..+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+23+..+29)
S=210-1 (tới đây tách ra làm như Trinh Hai Nam)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
=> \(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)
=> \(S=2^{10}-1=1024-1=1023\)
Mà \(5.2^8=5.256=1280\)
Vì 1023 < 1280
=> \(S<5.2^8\).
Ta có :
2S=2+2^2+2^3+...+2^10
2S-S=2+2^2+2^3+...+2^10-1-2-2^2-...-2^9
S=2^10-1
=>S<2^10 (1)
Ta lại có :
5.2^8>2^10 (2)
Tu (1) va (2) suy ra : S<5.2^8
****
\(S=1+2+2^2+2^3+....+2^8+2^9.\)
\(\Rightarrow2S=\text{}2+2^2+2^3+....+2^8+2^9+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+....+2^8+2^9+2^{10}\right)-\left(1+2+2^2+2^3+....+2^8+2^9\right)\)
\(S=2^{10}-1=1024-1=1023< 5\cdot2^8=5\cdot256=1280\)
Ta có: \(S=1+2+2^2+...+2^{2005}\)
\(2S=2\left(1+2+2^2+...+2^{2005}\right)\)
\(2S-S=\left(2+2^2+2^3+...+2^{2005}+2^{2006}\right)\)\(-\left(1+2+2^2+...+2^{2005}\right)\)
\(S=2^{2006}-1\)
Mà \(5.2^{2004}=\left(1+2^2\right)\)=
S =1+2+22+23+...+228+229
S=230-1
5.228=(1+4).228=228+4.228=228+230 =>5.228>S DỄS=1+2+2^2+2^3+...+2^28+2^29
2S=2^1+2^2+2^3+...+2^29+2^30
-S=1+2+2^2+2^3+...+2^29
\(\Rightarrow\) S=2^30-1
Xét 2^30-1 và 5.2^28:
2^30-1<2^30 và 2^30=2^2.2^28=4.2^28<5.2^28.
\(\Rightarrow\)2^30-1<5.2^28
\(\Rightarrow\)S<5.2^28.