tìm 2 số x,y biết x/5 = và x+ y = 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x : y : z =2 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{33}{11}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{4}=3\\\frac{z}{5}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=6\\y=12\\z=15\end{cases}}\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
b/ 2x =3y= 5z và x-y+z =-33
=> 2x = 3y, 3y = 5z
=> x/3 = y/2, y/5 = z/3
=> x/15 = y/10 = z/6 và x - y + z = -33
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)
\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)
\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)
a) Ta có:
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=-\frac{12}{31}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{72}{31}\\y=-\frac{180}{31}\\z=-\frac{120}{31}\end{cases}}\)
b) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}x=45\\y=30\\z=18\end{cases}}\)
1)
Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)
\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)
Vậy.....................
2)
Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)
Vậy................
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
a) (x+5)(y-2)=13
Ta có: 13=1.13=-1.(-13)
Ta có bảng:
x+5 | 1 | -1 | |
y-2 | 13 | -13 | |
x | -4 | -6 | |
y | 15 | -11 |
Vậy các cặp(x;y) thỏa mãn là: (-4;15);(-6;-11)
Hok "tuốt" nha^^
Áp dụng t/c dtsbn:
\(\dfrac{x}{33}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x}{5-33}=\dfrac{-196}{-28}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.33=231\\y=7.4=28\\z=7.5=35\end{matrix}\right.\)
thiếu đề kìa bạn -..-