Tìm x , biết :
x3 + 27 + ( x + 3 ) ( x + 9 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a) (2x−1)2−25=0(2x−1)2−25=0
(2x−1)2=0+25=25(2x−1)2=0+25=25
(2x−1)2=52=(−5)2(2x−1)2=52=(−5)2
⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2
b) 8x3−50x=08x3−50x=0
2x(4x2
a: Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
a,\(x^3-\dfrac{1}{9}=0\)
\(\Rightarrow x^3-\left(\dfrac{1}{3}\right)^3=0\)
\(\Rightarrow\left(x-\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=0\\x^2+\dfrac{1}{3}x+\dfrac{1}{9}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x^2+\dfrac{1}{3}x=-\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{3}\)
a: 49x^2-25=0
=>(7x-5)(7x+5)=0
=>7x-5=0 hoặc 7x+5=0
=>x=5/7 hoặc x=-5/7
b: Đề thiếu vế phải rồi bạn
c: (3x-2)^2-9(x+4)(x-4)=2
=>9x^2-12x+4-9(x^2-16)=2
=>9x^2-12x+4-9x^2+144=2
=>-12x+148=2
=>-12x=-146
=>x=146/12=73/6
d: x^3-6x^2+12x-8=0
=>(x-2)^3=0
=>x-2=0
=>x=2
e: x^3-9x^2+27x-27=0
=>(x-3)^3=0
=>x-3=0
=>x=3
a) \(-25+49x^2=0\)
\(\Leftrightarrow49x^2-25=0\)
\(\Leftrightarrow\left(7x\right)^2-5^2=0\)
\(\Leftrightarrow\left(7x-5\right)\left(7x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-5=0\\7x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=5\\7x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-\dfrac{5}{7}\end{matrix}\right.\)
b) \(16x^2-25\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[5\left(x-2\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-5x+10\right)\left(4x+5x-10\right)=0\)
\(\Leftrightarrow\left(10-x\right)\left(9x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\9x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{10}{9}\end{matrix}\right.\)
c) \(\left(3x-2\right)^2-9\left(x+4\right)\left(x+4\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9\left(x^2+8x+16\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9x^2-72x-144=2\)
\(\Leftrightarrow-84x-140=2\)
\(\Leftrightarrow-84x=142\)
\(\Leftrightarrow x=-\dfrac{142}{84}\)
\(\Leftrightarrow x=-\dfrac{71}{42}\)
d) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
e) \(-27+27x-9x^2+x^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
g) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Rightarrow-2\left(2x-5\right)=0\Rightarrow x=\dfrac{5}{2}\)
i) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a) x = 4
b) x = 3
c) x = 2
d) x = 1
e) x = 3
f) x = 2
g) x = 4
h) x = 3
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x+18\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^2-2x+18=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)^2+17=0\left(vn\right)\end{matrix}\right.\)