CMR:
3^(3n+2) + 5.[2^(3n+1)] chia hết cho 19
Mọi người giúp mình nhe. thanh kiu hihi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.
a)38-3n chia hết cho n
=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}
b)n+5 chia hết cho n+1
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}
=>n thuộc{0;1;3}
c)3n+4 chia hết cho n-1
3(n-1)+7chia hết cho n-1
=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}
=> n thuộc{2;8}
d)3n+2 chia hết cho n-1
3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}
=>n thuộc{2;6}
có j ko hiểu hỏi mk
a) Ta có: \(n^2+3=\left(n^2-1\right)+4=\left(n+1\right).\left(n-1\right)+4\)
- Để \(n^2+3⋮n+1\)\(\Leftrightarrow\)\(\left(n+1\right).\left(n-1\right)+4⋮n+1\)mà \(\left(n+1\right).\left(n-1\right)⋮n+1\)
\(\Rightarrow\)\(4⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)
- Ta có bảng giá trị:
\(n+1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) |
\(n\) | \(-2\) | \(0\) | \(-3\) | \(1\) | \(-5\) | \(3\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-5,-3,-2,0,1,3\right\}\)
b) Để \(n-1⋮3n-1\)\(\Leftrightarrow\)\(3.\left(n-1\right)⋮3n-1\)
- Ta có: \(3.\left(n-1\right)=3n-3=\left(3n-1\right)-2\)
- Để \(3.\left(n-1\right)⋮3n-1\)\(\Leftrightarrow\)\(\left(3n-1\right)-2⋮3n-1\)mà \(3n-1⋮3n-1\)
\(\Rightarrow\)\(2⋮3n-1\)\(\Rightarrow\)\(3n-1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
- Ta có bảng giá trị:
\(3n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) |
\(n\) | \(0\) | \(\frac{2}{3}\) | \(-\frac{1}{3}\) | \(1\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{0,1\right\}\)
c) Để \(n-5⋮n^2+3\)\(\Rightarrow\)\(\left(n-5\right).\left(n+5\right)⋮n^2+3\)
- Ta có: \(\left(n-5\right).\left(n+5\right)=n^2-25=\left(n^2+3\right)-28\)
- Để \(\left(n-5\right).\left(n+5\right)⋮n^2+3\)\(\Leftrightarrow\)\(\left(n^2+3\right)-28⋮n^2+3\)mà \(n^2+3⋮n^2+3\)
\(\Rightarrow\)\(28⋮n^2+3\)\(\Rightarrow\)\(n^2+3\inƯ\left(28\right)\in\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)
Vì \(n^2+3\ge3\forall n\)\(\Rightarrow\)\(n^2+3\in\left\{4;7;14;28\right\}\)
- Ta có bảng giá trị:
\(n^2+3\) | \(4\) | \(7\) | \(14\) | \(28\) |
\(n\) | \(\pm1\) | \(\pm2\) | \(\pm\sqrt{11}\) | \(\pm5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
- Thử lại
+ Với \(n=-1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-1-5=-6\\n^2+3=\left(-1\right)^2+3=4\end{cases}}\)mà \(-6⋮̸4\)
\(\Rightarrow\)\(n=-1\left(L\right)\)
+ Với \(n=1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=1-5=-4\\n^2+3=1^2+3=4\end{cases}}\)mà \(-4⋮4\)
\(\Rightarrow\)\(n=1\left(TM\right)\)
+ Với \(n=-2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-2-5=-7\\n^2+3=\left(-2\right)^2+3=7\end{cases}}\)mà \(-7⋮7\)
\(\Rightarrow\)\(n=-2\left(TM\right)\)
+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=2-5=-3\\n^2+3=2^2+3=7\end{cases}}\)mà \(-3⋮̸7\)
\(\Rightarrow\)\(n=2\left(L\right)\)
+ Với \(n=-5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-5-5=-10\\n^2+3=\left(-5\right)^2+3=28\end{cases}}\)mà \(-10⋮28\)
\(\Rightarrow\)\(n=-5\left(L\right)\)
+ Với \(n=5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=5-5=0\\n^2+3=5^2+3=28\end{cases}}\)mà \(0⋮28\)
\(\Rightarrow\)\(n=5\left(TM\right)\)
Vậy \(n\in\left\{-2,1,5\right\}\)
- Để mình chú thích:
1. TM là thỏa mãn
2. Phần c mình thử lại là mình đã làm "Vượt trội" nó lên