K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

s5.jpg
Trần Thị Thùy Dung
AH
Akai Haruma
Giáo viên
13 tháng 7 2023

Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.

30 tháng 7 2015

a)38-3n chia hết cho n

=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}

b)n+5 chia hết cho n+1

=>n+1+4 chia hết cho n+1

=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}

=>n thuộc{0;1;3}

c)3n+4 chia hết cho n-1

3(n-1)+7chia hết cho n-1

=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}

=> n thuộc{2;8}

d)3n+2 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}

=>n thuộc{2;6}

có j ko hiểu hỏi mk

16 tháng 3 2020

a) Ta có: \(n^2+3=\left(n^2-1\right)+4=\left(n+1\right).\left(n-1\right)+4\)

- Để \(n^2+3⋮n+1\)\(\Leftrightarrow\)\(\left(n+1\right).\left(n-1\right)+4⋮n+1\)mà \(\left(n+1\right).\left(n-1\right)⋮n+1\)

\(\Rightarrow\)\(4⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)

- Ta có bảng giá trị:

\(n+1\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)
\(n\)\(-2\)\(0\)\(-3\)\(1\)\(-5\)\(3\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-5,-3,-2,0,1,3\right\}\)

b) Để \(n-1⋮3n-1\)\(\Leftrightarrow\)\(3.\left(n-1\right)⋮3n-1\)

- Ta có: \(3.\left(n-1\right)=3n-3=\left(3n-1\right)-2\)

- Để \(3.\left(n-1\right)⋮3n-1\)\(\Leftrightarrow\)\(\left(3n-1\right)-2⋮3n-1\)mà \(3n-1⋮3n-1\)

\(\Rightarrow\)\(2⋮3n-1\)\(\Rightarrow\)\(3n-1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

- Ta có bảng giá trị:

\(3n-1\)\(-1\)\(1\)\(-2\)\(2\)
\(n\)\(0\)\(\frac{2}{3}\)\(-\frac{1}{3}\)\(1\)
 \(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{0,1\right\}\)

c) Để \(n-5⋮n^2+3\)\(\Rightarrow\)\(\left(n-5\right).\left(n+5\right)⋮n^2+3\)

- Ta có: \(\left(n-5\right).\left(n+5\right)=n^2-25=\left(n^2+3\right)-28\)

- Để \(\left(n-5\right).\left(n+5\right)⋮n^2+3\)\(\Leftrightarrow\)\(\left(n^2+3\right)-28⋮n^2+3\)mà \(n^2+3⋮n^2+3\)

\(\Rightarrow\)\(28⋮n^2+3\)\(\Rightarrow\)\(n^2+3\inƯ\left(28\right)\in\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)

Vì \(n^2+3\ge3\forall n\)\(\Rightarrow\)\(n^2+3\in\left\{4;7;14;28\right\}\)

- Ta có bảng giá trị:

\(n^2+3\)\(4\)\(7\)\(14\)\(28\)
\(n\)\(\pm1\)\(\pm2\)\(\pm\sqrt{11}\)\(\pm5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(L\right)\)\(\left(TM\right)\)

- Thử lại 

+ Với \(n=-1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-1-5=-6\\n^2+3=\left(-1\right)^2+3=4\end{cases}}\)mà \(-6⋮̸4\)

\(\Rightarrow\)\(n=-1\left(L\right)\)

+ Với \(n=1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=1-5=-4\\n^2+3=1^2+3=4\end{cases}}\)mà \(-4⋮4\)

\(\Rightarrow\)\(n=1\left(TM\right)\)

+ Với \(n=-2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-2-5=-7\\n^2+3=\left(-2\right)^2+3=7\end{cases}}\)mà \(-7⋮7\)

\(\Rightarrow\)\(n=-2\left(TM\right)\)

+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=2-5=-3\\n^2+3=2^2+3=7\end{cases}}\)mà \(-3⋮̸7\)

\(\Rightarrow\)\(n=2\left(L\right)\)

+ Với \(n=-5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-5-5=-10\\n^2+3=\left(-5\right)^2+3=28\end{cases}}\)mà \(-10⋮28\)

\(\Rightarrow\)\(n=-5\left(L\right)\)

+ Với \(n=5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=5-5=0\\n^2+3=5^2+3=28\end{cases}}\)mà \(0⋮28\)

\(\Rightarrow\)\(n=5\left(TM\right)\)

 Vậy \(n\in\left\{-2,1,5\right\}\)

- Để mình chú thích:

1. TM là thỏa mãn

2. Phần c mình thử lại là mình đã làm "Vượt trội" nó lên 

18 tháng 3 2020

cảm ơn nhiều