M=|2x-3|+|x-1| với x> 1.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
a/ \(A=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
\("="\Leftrightarrow x=1\)
b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=...\)
c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)
\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)
d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{\frac{4x}{x}}+4=8\)
\("="\Leftrightarrow x^2=4\Rightarrow x=...\)
e/ \(E=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
\("="\Leftrightarrow x+3=5-x\Rightarrow x=...\)
f/ \(F=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow2x+6=5-2x\Leftrightarrow x=...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(P=3x+\frac{1}{2x}=\frac{x}{2}+\frac{5x}{2}+\frac{1}{2x}\) \(\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5.1}{2}=\frac{5}{2}\)
"="\(\Leftrightarrow x=1\)
b/ \(B=\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}-\frac{3}{2}+\frac{1}{x+1}\)
\(\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
"="\(\Leftrightarrow3\left(x+1\right)^2=2\Leftrightarrow x=\frac{-3+\sqrt{6}}{3}\)
c/ \(C=\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{1}{6}+\frac{5}{2x-1}\)
\(\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=\frac{1+4\sqrt{15}}{6}\)
"="\(\Leftrightarrow x=\frac{6+\sqrt{30}}{12}\)
d/ \(D=\frac{x^2+4x+4}{x}=x+4+\frac{4}{x}\)\(\ge2\sqrt{x.\frac{4}{x}}+4=8\)
"="\(\Leftrightarrow x=2\)
a/ \(\frac{x}{2}+\frac{1}{2x}+\frac{5}{2}x\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+\frac{5}{2}.1=\frac{7}{2}\)
\("="\Leftrightarrow x=1\)
b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=\frac{-3+\sqrt{6}}{3}\)
c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{\left(2x-1\right).5}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)
\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)
d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=8\)
\("="\Leftrightarrow x^2=4\Rightarrow x=...\)
vì x>1.5=>2x-3>0 và x-1>0
=>M=2x-3+x-1=3x-4
kĩ hơn đi