Cm bất đẳng thức sau vs a, b, c >0.
(a+b)(ab+1)>_4ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT
Ta có: \(\left(m-n\right)^2\ge0\)
<=> \(m^2-2m.n+n^2\ge0\)
<=> \(m^2+2m.n+n^2-4m.n\ge0\)
<=> \(\left(m+n\right)^2\ge4m.n\)
=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)
a, Áp dụng BĐT côsi ta có:
\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)
vậy \(\dfrac{1}{x}+x\ge2\) (x>0)
b, Áp dụng BĐT côsi ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0
-----------Chúc bạn học tốt -------------
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c
a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra
b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 2 vế của bất đẳng thức ta được :
\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)
=> bất đẳng thức cần chứng minh
a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi
Giả sử \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)
=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)
=>\(\left(a+b\right)\left(a+b\right)\) > 4ab
=>\(\left(a+b\right)^2-4ab\) > 0
=>\(a^2+2ab+b^2-4ab\) > 0
=>\(a^2-2ab+b^2\) > 0
=>\(\left(a-b\right)^2\) > 0
BĐT cuối luôn đúng với mọi a;b
=>điều giả sử là đúng,ta có đpcm
(*)đề sai nên Kiệt ko ra là phải
Cách 1. Áp dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a.\frac{1}{a}}+\sqrt{b.\frac{1}{b}}+\sqrt{c.\frac{1}{c}}\right)^2=\left(1+1+1\right)^2=9\)
Cách 2. Áp dụng bđt Cauchy :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab.1}=4ab\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b\\ab=1\end{matrix}\right.\Leftrightarrow a=b=1\)
P/s: Cho em hỏi cái: c ở đâu ra vại:v