2X/3=3Y/4=4Z/5 VÀ X+Y+Z=49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: 2x/3 = 3y/4 => y = (4/3)(2x/3) = 8x/9
2x/3 = 4z/5 => z = (5/4)(2x/3) = 10x/12 = 5x/6
=> x + y + z = x + 8x/9 + 5x/6 = 49
hay là
(18 + 16 + 15)x/18 = 49, tu'c là x = 18
=> y = (8/9)18 = 16
và z = (5/6)18 = 15
MIK NHA
MIK LM CÂU KHÓ NHẤT NHÁ!
c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)
Vậy...
a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)
=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)
=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\) và \(x-y=15.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)
Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)
Chúc bạn học tốt!
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{z}{1,25}=\frac{2x-3y+z}{3-4+1,25}=\frac{49}{0,25}=196\Rightarrow\hept{\begin{cases}2x=196.3=588\\3y=196.4=784\\4z=196.5=980\end{cases}\Rightarrow\hept{\begin{cases}x=294\\y=261\frac{1}{3}\\z=245\end{cases}}31}\)
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
Từ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{\frac{3}{2}}=12\Rightarrow x=12\cdot\frac{3}{2}=18\\\frac{y}{\frac{4}{3}}=12\Rightarrow y=12\cdot\frac{4}{3}=16\\\frac{z}{\frac{5}{4}}=12\Rightarrow z=12\cdot\frac{5}{4}=15\end{matrix}\right.\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
suy ra :
\(\frac{2x}{3}=12\Rightarrow2x=36\Rightarrow x=18\)
\(\frac{3y}{4}=12\Rightarrow3y=48\Rightarrow y=16\)
\(\frac{4z}{5}=12\Rightarrow4z=60\Rightarrow z=15\)
Áp dụng t/c dtsbn:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\\ \Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15