tmf x ,y
/2x+1-y/+/x-y/=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x=3y;7y=5z
⇒\(\frac{x}{4}\)=\(\frac{y}{3}\);\(\frac{y}{7}\)=\(\frac{z}{5}\)
⇒\(\frac{x}{28}=\frac{y}{21};\frac{y}{21}=\frac{z}{15}\)
⇒ \(\frac{x}{28}=\frac{y}{21}=\frac{z}{15}\)
⇒ \(\frac{x}{28}=\frac{y}{21}=\frac{z}{15}\) \(\frac{2x-3y+z}{56-63+15}=\frac{6}{8}=\frac{3}{4}\)
Tự tính tiếp
Ta có:
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\) (1)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}.\)
Có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}.\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\) và \(2x-3y+z=6.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x-3y+z}{30-60+28}=\frac{6}{-2}=-3.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{15}=-3\Rightarrow x=\left(-3\right).15=-45\\\frac{y}{20}=-3\Rightarrow y=\left(-3\right).20=-60\\\frac{z}{28}=-3\Rightarrow z=\left(-3\right).28=-84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-45;-60;-84\right).\)
Chúc bạn học tốt!
đăng ít thôi bạn! Nếu bạn đăng lẻ ra thì bn sẽ nhận đc sự trợ giúp nhanh hơn !
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(y=\sqrt{x^2+2x+3}+\sqrt{2x^2+4x+3}\)
\(y=\sqrt{x^2+2x+3}+\sqrt{2\left(x^2+2x+\dfrac{3}{2}\right)}\)
\(y=\sqrt{x^2+2x+1+2}+\sqrt{2\left(x^2+2x+1+\dfrac{1}{2}\right)}\)
\(y=\sqrt{\left(x+1\right)^2+2}+2\sqrt{\left(x+1\right)^2+1}\ge\sqrt{2}+1\)
Dấu "=" xảy ra khi: \(x=-1\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vì \(\hept{\begin{cases}|2x+1-y|\ge0;\forall x,y\\|x-y|\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow|2x+1-y|+|x-y|\ge0;\forall x,y\)
Do đó \(|2x+1-y|+|x-y|=0\)
\\(\Leftrightarrow\hept{\begin{cases}|2x+1-y|=0\\|x-y|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=y\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=x\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy x=y=-1