K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow n+3=5\)

hay n=2

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

DT
16 tháng 10 2023

3n + 9 chia hết cho n ( n khác 0 ) 

Vì 3n chia hết cho n với mọi n là STN khác 0

=> 9 chia hết cho n 

Hay n thuộc Ư(9)={1;3;9}

Tổng = 13

 

25 tháng 12 2015

3n+10 chia hết cho n-1

3n-3+13 chia hết cho n-1

3(n-1)+13 chia hết cho n-1

=>13 chia hết cho n-1 hay n-1EƯ(13)={1;13}

=>nE{2;14}

18 tháng 12 2016

               3n+10 chia hết cho n-1

Ta có: 3n+10 = 3n-3+13 chia hết cho n-1

     => 3(n-1)+13 chia hết cho n-1

     => 13 chia hết cho n-1 hay n-1 = Ư(13) = {1;13}

     => n = {2;14}

21 tháng 4 2017

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)

Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:

\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\)  \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)

\(\Rightarrow b⋮d\). Lại có:

\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)

Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)

15 tháng 9 2023

Help me!