Cho x+y=2,chứng minh x,y <hoặc=2
Giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho 2 số dương:
$x^2+(x+y)^2\geq 2x(x+y)\Rightarrow \frac{x^2}{x^2+(x+y)^2}\leq \frac{x^2}{2x(x+y)}=\frac{x}{2(x+y)}$
$y^2+(x+y)^2\geq 2y(x+y)\Rightarrow \frac{y^2}{y^2+(x+y)^2}\leq \frac{y^2}{2y(x+y)}=\frac{y}{2(x+y)}$
Cộng theo vế:
$\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}\leq \frac{x+y}{2(x+y)}=\frac{1}{2}$
Dấu "=" xảy ra khi $x^2=(x+y)^2=y^2$ (điều này vô lý với $x,y>0$)
Do đó dấu "=" không xảy ra, hay $\frac{x^2}{x^2+(x+y)^2}+\frac{y^2}{y^2+(x+y)^2}<\frac{1}{2}$ (đpcm)
Bạn nên viết đề bằng công thức toán để mọi người theo dõi dễ hơn (biểu tượng $\sum$ góc trái khung soạn thảo)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé